Skip to main content
Log in

Calculation of tidal-evolution constants for close binary systems

  • Physics of Stars and Interstellar Medium
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Tidal torque constants are calculated for each component of 112 close eclipsing binaries of the DMS type (detached components located within the main sequence) from the catalogue by Svechnikov and Perevozkina (1999) on the basis of the evolutionary models by Claret (2004), which are the first to present constants for investigation of tidal effects in close binaries. This study applies conversion of a grid of model tracks into that of isochrones with an arbitrarily small time step based on optimal nonlinear interpolation. The small time-step criterion guarantees application of the linear interpolation procedure to estimate the age of the DMS components and find an individual set of tidal-evolution constants for the close binary under study that refers to the estimated time point. The theoretical values of the apsidal motion period calculated from the individual internal structure constants for each close binary are well consistent with the observations. This confirms the validity of the evolutionary stellar models by Claret and the numerical algorithm proposed here.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. S. Ahn, “Photometric Observations of NY Cephei,” Astrophys. Space Sci. 198, 137–148 (1992).

    Article  ADS  Google Scholar 

  2. T. Ak, B. Albayrak, S. O. Selam, and T. Tannverdi, “A New Light-Time Effect Study of TX Herculis,” New Astron. 9, 265–272 (2004).

    Article  ADS  Google Scholar 

  3. S. H. P. Alencar, L. P. R. Vaz, and B. E. Helt, “Absolute Dimensions of Eclipsing Binaries. XXI. V906 Scorpii: a Triple System Member of M7,” Astron. Astrophys. 326, 709–721 (1997).

    ADS  Google Scholar 

  4. J. Andersen, “Spectroscopic Observations of Eclipsing Binaries. III. Definitive Orbits and Effects of Line Blending in CV Velorum,” Astron. Astrophys. 44, 355–362 (1975).

    ADS  Google Scholar 

  5. J. Andersen, “Spectroscopic Observations of Eclipsing Binaries IV. Absolute Dimensions of the Giant System SZ Centauri,” Astron. Astrophys. 45, 203–208 (1975).

    ADS  Google Scholar 

  6. J. Andersen and J. V. Clausen, “Absolute Dimensions of Eclipsing Binaries. XV. EM Carinae,” Astron. Astrophys. 213, 183–194 (1989).

    ADS  Google Scholar 

  7. J. Andersen, J. V. Clausen, and A. Gimenez, “Absolute Dimensions of Eclipsing Binaries. XX. GG Lupi — Young Metal Deficient B-Stars,” Astron. Astrophys. 277, 439–451 (1993).

    ADS  Google Scholar 

  8. J. Andersen, J. V. Clausen, and P. Magain, “Absolute Dimensions of Eclipsing Binaries. XIV. UX Mensae,” Astron. Astrophys. 211, 346–352 (1989).

    ADS  Google Scholar 

  9. J. Andersehn, J. V. Clausen, and B. Nordstrom, “Absolute Dimensions of Eclipsing Binaries. V. VV Pyxidis, a Detached Early A-Type System with Equal Components,” Astron. Astrophys. 134, 147–157 (1984).

    ADS  Google Scholar 

  10. J. Andersen, J. V. Clausen, and B. Nordstrom, “Absolute Dimensions of Eclipsing Binaries. VI. The F-Type System DM Virginis,” Astron. Astrophys. 137, 281–286 (1984).

    ADS  Google Scholar 

  11. J. Andersen, J. V. Clausen, and B. Nordstrom, “Absolute Dimensions of Eclipsing Binaries. XII. TZ Mensae,” Astron. Astrophys. 175, 60–70 (1987).

    ADS  Google Scholar 

  12. J. Andersen, J. V. Clausen, B. Nordstrom, and B. Reipurth, “Absolute Dimensions of Eclipsing Binaries. I. The Early-Type Detached System QX Carinae,” Astron. Astrophys. 121, 271–280 (1983).

    ADS  Google Scholar 

  13. J. Andersen, H. Gjerloff, and M. Imbert, “Spectroscopic Observations of Eclipsing Binaries. II. Absolute Dimensions, Evolutionary State, and Helium Content of RZ Chamaeleontis,” Astron. Astrophys. 44, 349–353 (1975).

    ADS  Google Scholar 

  14. J. Andersen, B. Nordstrom, and J. V. Clausen, “Absolute Dimensions of Eclipsing Binaries. XVI. V1031 Orionis,” Astron. Astrophys. 228, 365–378 (1990).

    ADS  Google Scholar 

  15. J. Andersen and D. M. Popper, “The G-Type Eclipsing Binary TY Pyxidis,” Astron. Astrophys. 39, 131–134 (1975).

    ADS  Google Scholar 

  16. J. Andersen and L. P. R. Vaz, “Absolute Dimensions of Eclipsing Binaries. II. KM Hydrae — A Detached AM System with Unequal Components,” Astron. Astrophys. 130, 102–110 (1984).

    ADS  Google Scholar 

  17. M. J. Barembaum and P. B. Etzel, “A Photometric Analysis of the Apsidal Motion Binary System PV Cassiopeiae,” Astron. J. 109, 2680–2689 (1995).

    Article  ADS  Google Scholar 

  18. R. A. Botsula, “Nonstationary Conditions in Eclipsing Binary Systems with UV Leo Solar-Type Components,” Izv. Engelhardt Obs. 43–44, 170–184 (1978).

    Google Scholar 

  19. J. F. Burns, E. F. Giunan, and J. J. Marshall, “New Apsidal Motion Determination of the Eccentric Eclipsing Binary V1143 Cygni,” IBVS, No. 4364 (1996).

  20. O. Cakirli, C. Ibanoglu, and A. Frasca, “A Spectroscopic Study of the Close Eclipsing Binary HS Herculis,” Astron. Astrophys. 474, 579–584 (2007).

    Article  ADS  Google Scholar 

  21. B. W. Casey, R. D. Mathieu, N. B. Suntzeff, and F. M. Walter, “The Pre-Main-Sequence Triple TY CrA: Spectroscopic Detection of the Secondary and Tertiary Components,” Astron. Astrophys. 109, 2156–2168 (1995).

    ADS  Google Scholar 

  22. S. Chandrasekhar, “The Equilibrium of Distorted Polytropes. III. The Double Star Problem,” Mon. Not. R. Astron. Soc. 93, 462–471 (1933).

    ADS  MATH  Google Scholar 

  23. G. Chauvin, A. M. Lagrange, H. Beust, et al., “VLT/NACO Adaptive Ptics Imaging of the TY CrA System. A Fourth Stellar Component Candidate Detected,” Astron. Astrophys. 406, 51–54 (2003).

    Article  ADS  Google Scholar 

  24. Kim Chun-Hwey, Nha Il-Seong, and J. Kreiner, “A Possible Detection of a Second Light-Time Orbit for the Massive, Early-Type Eclipsing Binary Star AH Cephei,” Astron. J. 129, 990–1000 (2005).

    Article  ADS  Google Scholar 

  25. A. Claret, “New Grids of Stellar Models Including Tidal-Evolution Constants up to Carbon Burning. I. From 0.8 to 125 M at Z = 0.02,” Astron. Astrophys. 424, 919–925 (2004).

    Article  ADS  Google Scholar 

  26. A. Claret, A. Gimenez, and E. L. Martin, “A Test Case of Stellar Evolution: the Eclipsing Binary EK Cephei. A System with Accurate Dimensions, Apsidal Motion Rate and Lithium Depletion Level,” Astron. Astrophys. 302, 741–744 (1995).

    ADS  Google Scholar 

  27. J. V. Clausen, “V539 Arae: First Accurate Dimensions of a Slowly Pulsating B Star,” Astron. Astrophys. 308, 151–169 (1996).

    ADS  Google Scholar 

  28. J. V. Clausen, “Absolute Dimensions of Eclipsing Binaries. XIX: BW Aquarii — A Late F-Type Indicator of Overshooting,” Astron. Astrophys. 246, 397–406 (1991).

    ADS  Google Scholar 

  29. J. V. Clausen and B. Gronbech, “Four-Colour Photometry of Eclipsing Binaries. VIII. CV Velorum, Light Curves, Photometric Elements and Absolute Dimensions,” Astron. Astrophys. 58, 131–137 (1977).

    ADS  Google Scholar 

  30. J. V. Clausen and B. Nordstrom, “Four-Colour Photometry of Eclipsing Binary, XA — Photometric Elements, Absolute Dimensions and Helium Abundance of Chi-2 Hydrae,” Astron. Astrophys. 67, 15–22 (1978).

    ADS  Google Scholar 

  31. T. G. Cowling, “On the Motion of the Apsidal Line in Close Binary Systems,” Mon. Not. R. Astron. Soc. 98, 734–743 (1938).

    ADS  MATH  Google Scholar 

  32. O. L. Degirmenci, “Photometry and Analysis of the Eclipsing Binary IQ Persei,” Astrophys. Space Sci. 253, 237–252 (1997).

    Article  ADS  Google Scholar 

  33. K. de Mey, C. Aerts, C. Waelkens, and H. van Winckel, “The Early-Type Multiple Systems ? Orionis. II. Line Profile Variations in Component Ab,” Astron. Astrophys. 310, 164–172 (1996).

    ADS  Google Scholar 

  34. O. Demircan and E. Derman, “1988 Light Curves of RX Herculis,” IBVS, No. 3403 (1989).

  35. M. Drozdz, “CCD Obwervations of DN UMa,” Int. Amateur-Prof. Photoel. Photom. Commun. 67, 30–33 (1997).

    ADS  Google Scholar 

  36. M. Drozdz, J. Krzesinski, and G. Pajdosz, “Apsidal Motion of IQ Persei,” IBVS, No. 3494 (1990).

  37. G. N. Dryomova and M. A. Svechnikov, “Methods of Age Extimation for Detached Binary Systems,” Asrophys. Space Sci. 283, 309–336 (2003).

    Article  ADS  Google Scholar 

  38. F. C. Fekel, “Chromospherically Active Stars. IV. HD 178450=V478 Lyr: An Early-Type BY Draconis Type Binary,” Astron. J. 95, 215–219 (1988).

    Article  ADS  Google Scholar 

  39. J. M. Garcia and A. Gimenez, “Photometric Elements of the Eclipsing Binary DN UMa = HR 4560,” Astrophys. Space Sci. 125, 181–188 (1986).

    Article  ADS  Google Scholar 

  40. A. Gimenez and J. V. Clausen, “AG Persei: Absolute Dimensions and Membership of Perseus OB2,” Astron. Astrophys. 291, 795–804 (1994).

    ADS  Google Scholar 

  41. A. Gimenez, J. V. Clausen, and J. Andersen, “Four-Colour Photometry of Eclipsing Binaries. XXIA Photometric Analysis and Apsidal Motion Study of V346 Centauri,” Astron. Astrophys. 160, 310–320 (1986).

    ADS  Google Scholar 

  42. A. Gimenez, J. V. Clausen, and K. Jensen, “Four-Colour Photometry of Eclipsing Binaries. XXIV. Apsidal Motion of QX Carinae, ζ Phoenicis and NO Puppis,” Astron. Astrophys. 159, 157–165 (1986).

    ADS  Google Scholar 

  43. A. Gimenez and J. M. Quintana, “Apsidal Motion and Revised Photometric Elements of the Eccentric Eclipsing Binary V477 Cygni,” Astron. Astrophys. 260, 227–236 (1992).

    ADS  Google Scholar 

  44. G. Giuricin and F. Mardirossian, “Revised Photometric Elements of Five Eclipsing Binaries,” Astron. Astrophys. Suppl. Ser. 45, 499–505 (1981).

    ADS  Google Scholar 

  45. G. Giuricin, F. Mardirossian, and M. Mezzetti, “AN And—A Detached Eclipsing Binary System with an AM Primary Member,” Astron. Astrophys. 114, 74–76 (1982).

    ADS  Google Scholar 

  46. S. Yu. Gorda, “Identification of the Variable Component of ADS 8347 (DN UMa),” Astron. Lett. 20, 446–448 (1994).

    ADS  Google Scholar 

  47. E. F. Guinan, J. J. Marshal, and F. P. Maloney, “A New Apsidal Motion Determination for DI Herculis,” IBVS, No. 4101 (1994).

  48. E. F. Guinan, I. Ribas, E. L. Fitzpatrick, et al., “Eclipsing Binaries as Astrophysical Laboratories: Internal Structure, Core Convection, and Evolution of the B-Star Components of V380 Cygni,” Astrophys. J. 544, 409–422 (2000).

    Article  ADS  Google Scholar 

  49. R. Haefner, I. Skillen, and M. de Groot, “Absolute Parameters of the Early-Type Double-Lined Eclipsing Binary AL Sculptoris (HD 224113),” Astron. Astrophys. 179, 141–156 (1987).

    ADS  Google Scholar 

  50. G. Hill, R. W. Hilditch, G. C. L. Aikman, and B. Khalesseh, “Studies of Early-Type Variable Stars. 8. The Massive Binary System CC Cassiopeiae,” Astron. Astrophys. 282, 455–466 (1994).

    ADS  Google Scholar 

  51. D. E. Holmgren and P. Hadrava, et al., “Search for Forced Oscillations in Binaries. III. Improved Elements and the Detection of Lin-Profile Variability of the B4V + A6V: System AR Cassiopeiae,” Astron. Astrophys. 345, 855–868 (1999).

    ADS  Google Scholar 

  52. D. E. Holmgren, G. Hill, and C. D. Scarfe, “New Apsidal-Moton Parameters for Y Cygni,” Observatory 115, 188–192 (1995).

    ADS  Google Scholar 

  53. D. E. Holmgren, C. D. Scarfe, G. Hill, and W. A. Fisher, “Absolute Dimensions of Early-Type Eclipsing Binary Stars. I. NY Cephei,” Astron. Astrophys. 231, 89–94 (1990).

    ADS  Google Scholar 

  54. D. P. Hube and J. S. Couch, “DE Draconis — Spectroscopic Orbit, Rotation Effect and Physical Model,” Astrophys. Space Sci. 81, 357–368 (1982).

    Article  ADS  Google Scholar 

  55. D. P. Hube and B. E. Martin, “The Eclipsing Binary HD 174853. II. Photometric Analysis and Model,” Astron. J. 102, 1777–1783 (1991).

    Article  ADS  Google Scholar 

  56. M. Imbert, “Photoelectric Radial Velocities of Eclipsing Binaries. III — Orbital Elements of AN Cam,” Astron. Astrophys. Supl. Ser. 67, 161–167 (1987).

    ADS  Google Scholar 

  57. K. W. Jeffreys, “A Photometric Study of the Eclipsing Binary RX Hercules,” Astron. Astrophys. Suppl. Ser. 42, 285–288 (1980).

    ADS  Google Scholar 

  58. C. D. Kandpal, “Photoelectric Elements of the Binary System AO Monocerotis,” Astrophys. Space Sci. 40, 3–14 (1976).

    Article  ADS  Google Scholar 

  59. C. D. Kandpal and J. B. Srivastava, “Photoelectric Elements of the Eclipsing Binary ZZ Cephei,” Bull. Astron. Inst. Czech. 18, 265–269 (1967).

    ADS  Google Scholar 

  60. Kh. F. Khaliullin and A. I. Khaliullina, “The Third Body in the Eclipsing System RR Lyn,” Astron. Rep. 46, 119–126 (2002).

    Article  ADS  Google Scholar 

  61. Kh. F. Khaliullin and A. I. Khaliullina, “Apsidal Motion and the Third-Body Problem in the Binary HS Her,” Astron. Rep. 50, 814–822 (2006).

    Article  ADS  Google Scholar 

  62. Kh. F. Khaliullin and V. S. Kozyreva, “Apsidal Motion in the Eclipsing Binary AS Cam,” Astrophys. Space Sci. 94, 115–122 (1983).

    Article  ADS  Google Scholar 

  63. Kh. F. Khaliullin and V. S. Kozyreva, “Photometric Light Curves and Physical Parameters of the Eclipsing Binary Systems IT Cas, CO Cep, AI Hya with Possible Apsidal Motions,” Astrophys. Space Sci. 155, 53–69 (1989).

    Article  ADS  Google Scholar 

  64. A. F. Kholtygin, T. E. Burlakova, S. N. Fabrika, and G. G. Valyavin, “Binary Stars as Critical Tools and Tests in Contemporary Astrophysics,” in Proceedings of the Internat. Astron. Union. Symposium No. 240, 22–25 Aug. 2006, Prague, Czech. Republic (Prague, 2006), p. 391.

  65. R. H. Koch and B. J. Hrivnak, “A Photometric Study of the Close Binary Delta Orionis A,” Astrophys. J. 248, 249–255 (1981).

    Article  ADS  Google Scholar 

  66. Z. Kopal, Close Binary Systems (Chapman and Hall, London, 1959).

    Google Scholar 

  67. Z. Kopal, Dynamics of Close Binary Systems (Reidel, Dordrecht, 1978).

    MATH  Google Scholar 

  68. A. V. Krylov, L. V. Mossakovskaya, Kh. F. Khaliullin, and A. I. Khaliullina, “Apsidal Motion and Physical Parameters of the Eclipsing Binary System AR Cas,” Astron. Rep. 47, 551–561 (2003).

    Article  ADS  Google Scholar 

  69. C. H. Lacy, “Absolute Dimensions and Masses of Eclipsing Binaries. II. YZ Cassiopeiae,” Astrophys. J. 251, 591–596 (1981).

    Article  ADS  Google Scholar 

  70. C. H. Lacy, “Absolute Dimensions and Masses of Eclipsing Binaries. II. CW Canis Majoris,” Astrophys. J. 261, 612–616 (1982).

    Article  ADS  Google Scholar 

  71. C. H. Lacy, “Absolute Dimensions and Masses of AD Bootis,” Astron. J. 113, 1406–1410 (1997).

    Article  ADS  Google Scholar 

  72. C. H. Lacy and M. L. Frueh, “Properties of the Main-Sequence Eclipsing Binary V442 Cygni,” Astron. J. 94, 712–722 (1987).

    Article  ADS  Google Scholar 

  73. C. H. Lacy, O. Gulmen, N. Gudur, and C. Sezer, “Properties of the Main-Sequence Eclipsing Binary UZ Draconis,” Astron. J. 97, 822–835 (1989).

    Article  ADS  Google Scholar 

  74. P. Lampens, “Observational Aspects of Two Delta Scuti Variables in Binaries or Multiple Stars: Theta 2 Tau and RS Cha,” ASP Conf. Proc. 256, 149–155 (2002).

    ADS  Google Scholar 

  75. D. W. Latham, B. Nordstrom, J. Andersen, et al., “Accurate Mass Determination for Double-Lined Spectroscopic Binaries by Digital Cross-Correlation Spectroscopy: DM Virginis Revisited,” Astron. Astrophys. 314, 864–870 (1996).

    ADS  Google Scholar 

  76. H. Lehmann, P. Harmanec, C. Aerts, et al., “A New Analysis of the Radial Velocity Variations of the Eclipsing and Spectroscopic Binary EN Lacertae,” Astron. Astrophys. 367, 236–249 (2001).

    Article  ADS  Google Scholar 

  77. A. P. Linnell, P. B. Etzel, I. Hubeny, and E. C. Olson, “A Photometric and Spectrophotometric Study of MR Cygni,” Astrophys. J. 494, 773–782 (1998).

    Article  ADS  Google Scholar 

  78. R. D. Lorenz, P. Mayer, and H. Drechsel, “SZ Camelopardalis — An Early-Type Eclipsing Binary Embedded in a Multiple System,” Astron. Astrophys. 332, 909–927 (1998).

    ADS  Google Scholar 

  79. F. P. Maloney, E. F. Guinan, L. Barge, and R. Mardling, “Revisiting the Anomalous Apsidal Motion of the Eccentric Eclipsing Binary DI Herculis,” Bull. Am. Astron. Soc. 35, 1224 (2003).

    ADS  Google Scholar 

  80. F. P. Maloney, E. F. Guinan, and P. Boyd, “Eclipsing Binary Stars as Tests of Gravity Theories — The Apsidal Motion of AS Camelopardalis,” Astron. J. 98, 1800–1813 (1989).

    Article  ADS  Google Scholar 

  81. B. Martin, D. Hube, and D. Lyder, “The Ellipsoidal Variable 42 Persei — Observations and Model,” Publ. Astron. Soc. Pacif. 102, 1153–1160 (1990).

    Article  ADS  Google Scholar 

  82. D. Ya. Martynov and Kh. F. Khaliullin, “On the Relativistic Motion of the Periastron in the Eclipsing Binary System DI Herculis,” Astrophys. Space Sci. 71, 147–170 (1980).

    Article  ADS  Google Scholar 

  83. K. Maslev and A. Nikolov, “The Motion of the Line of Apsides of Zeta Phoenicis,” Astrpophys. Space Sci. 154, 281–285 (1989).

    Article  ADS  Google Scholar 

  84. P. Mayer, P. Hadrava, P. Harmanec, and D. Chohol, “New Data on the Eclipsing Binary V1765 CYG (HR 7551) and Improved Orbital and Light-Curve Solutions,” Bull. Astron. Inst. Czech. 42, 230–240 (1991).

    ADS  Google Scholar 

  85. P. Mayer, R. Lorenz, and H. Drechsel, “Spectroscopy of Four Early-Type Eclipsing Binaries,” Astron. Astrophys. 388, 268–278 (2002).

    Article  ADS  Google Scholar 

  86. T. S. Metcalfe, T. D. Mathieu, D. W. Latham, and G. Torres, “The Low-Mass Double-Lined Eclipsing Binary CM Draconis: A Test of the Primordial Helium Abundance and the Mass-Radius Relation Near the Bottom of the Main Sequence,” Astrophys. J. 456, 356–364 (1996).

    Article  ADS  Google Scholar 

  87. J. W. Mofflat, “New Theory of Gravitation,” Phys. Rev. D: Part. Fields 19, 3554–3558 (1979).

    ADS  Google Scholar 

  88. J. W. Mofflat, “The Orbital Motion of DI Herculis as a Test of a Theory of Gravitation,” Astrophys. J. Lett. 287(Pt 2), 77–79 (1984).

    Article  ADS  Google Scholar 

  89. J. W. Mofflat, “Cosmions in the Nonsymmetric Gravitational Theory,” Phys. Rev. D: Part. Fields 39, 474–484 (1989).

    ADS  Google Scholar 

  90. D. G. Monet, “A Discussion of Apsidal Motion Detected in Selected Spectroscopic Binary Systems,” Astrophys. J. 237, 513–528 (1980).

    Article  ADS  Google Scholar 

  91. L. V. Mossakovskaya and Kh. F. Khaliullin, “Apsidal Motion in the System V478 Cyg,” Astron. Lett. 22, 132–134 (1996).

    ADS  Google Scholar 

  92. B. Nordstrom and K. T. Johansen, “Radii and Masses for Young Star AR Aurigae,” Astron. Astrophys. 282, 787–800 (1994).

    ADS  Google Scholar 

  93. B. Nordstrom and K. T. Johansen, “Radii and Masses for Beta Aurigae,” Astron. Astrophys. 291, 777–785 (1994).

    ADS  Google Scholar 

  94. T. Panchatsaram and K. D. Abhyankak, “On the Orbital Periods of the Eclipsing Binaries CM Lacertae, AB Andromedae and YY Eridani,” Astron. Soc. India Bull. 9, 243–248 (1981).

    ADS  Google Scholar 

  95. D. M. Popper, “Rediscussion of Eclipsing Binaries. VII. WZ Ophiuchi and Other Solar-Type Stars,” Astrophys. J. 141, 126–144 (1965).

    Article  ADS  Google Scholar 

  96. D. M. Popper, “Rediscussion of Eclipsing Binaries. XII. V805 Aquilae and EE Pegasi, Two Main-Sequence Systems with Unequal Components,” Astrophys. J. 244, 541–545 (1981).

    Article  ADS  Google Scholar 

  97. D. M. Popper, “HD 208095—Disappearance of the Last of the Overmassive Detached Binaries,” Publ. Astron. Soc. Pacif. 94, 76–79 (1982).

    Article  MathSciNet  ADS  Google Scholar 

  98. D. M. Popper, “The F-Type Eclipsing Binaries ZZ Bootis, CW Eridani, and BK Pegasi,” Astron. J. 88, 1242–1256 (1983).

    Article  ADS  Google Scholar 

  99. D. M. Popper, “Rediscussion of Eclipsing Binaries. XI. The Bright AM System V624 Herculis,” Astron. J. 89, 1057–1062 (1984).

    Article  ADS  Google Scholar 

  100. D. M. Popper, “Spectroscopic Orbits of Two Early A-Type Eclipsing Binaries EG Serpentis and DN Ursae Majoris,” Publ. Astron. Soc. Pacif. 98, 1312–1316 (1986).

    Article  ADS  Google Scholar 

  101. D. M. Popper, “Rediscussion of Eclipsing Binaries. XVI. The Detached Early A Type Binaries PV Cassiopeiae and WX Cephei,” Astron. J. 93, 672–677 (1987).

    Article  ADS  Google Scholar 

  102. D. M. Popper, “Rediscussion of Eclipsing Binaries. XVIII. Faint Secondaries in the Spectra of Early B-Type Systems,” Publ. Astron. Soc. Pacif. 105, 721–730 (1993).

    Article  ADS  Google Scholar 

  103. D. M. Popper, J. Andersen, J. V. Clausen, and B. Nordstrom, “Absolute Dimensions of Eclipsing Binaries. IX — The Early AM System GZ Canis Majoris,” Astron. J. 90, 1324–1333 (1985).

    Article  ADS  Google Scholar 

  104. D. M. Popper and P. B. Etzel, “Photometric Orbits of Seven Detached Eclipsing Binaries,” Astron. J. 86, 102–120 (1981).

    Article  ADS  Google Scholar 

  105. D. M. Popper, C. H. Lacy, M. L. Frueh, and A. E. Turner, “Properties of Main-Sequence Eclipsing Binaries — Into the G Stars with HS Aurigae, FL Lyrae, and EW Orionis,” Astron. J. 91, 383–404 (1986).

    Article  ADS  Google Scholar 

  106. I. Ribas, C. Jordi, and J. Torra, “CD Tau: a Detached Eclipsing Binary with a Solar-Mass Companion,” Mon. Not. R. Astron. Soc. 309, 199–207 (1999).

    Article  ADS  Google Scholar 

  107. H. N. Russell, “On the Advance of Periastron in Eclipsing Binaries,” Mon. Not. R. Astron. Soc. 88, 641–643 (1928).

    ADS  Google Scholar 

  108. A. Sanyal, H. S. Mahra, and N. B. Sanwal, “Photoelectric Observations of the Eclipsinbg Variable IM Monocerotis,” Bull. Astron. Inst. Czech. 16, 209–212 (1965).

    ADS  Google Scholar 

  109. S. J. Schiller and E. F. Milone, “Photometric Analysis of the Hyades Eclipsing Binary HD 27130,” Astron. J. 93, 1471–1483 (1987).

    Article  ADS  Google Scholar 

  110. H. Schneller, “Lichtelektrische Beobachtungen und Systemkonstanten des Bedeckungsveranderlichen EO Aurigae,” Astron. Nachr. 287, 49–53 (1963).

    Article  ADS  Google Scholar 

  111. R. R. Shobbrook, N. R. Lomb, and D. Evans, “The Short Period Light and Velocity Variations in Alpha Virginis,” Mon. Not. R. Astron. Soc. 156, 165–180 (1972).

    ADS  Google Scholar 

  112. J. Southworth, P. F. L. Maxted, and B. Smalley, “Eclipsing Binaries in Open Clusters. II. V453 Cyg in NGC 6871,” Mon. Not. R. Astron. Soc. 351, 1277–1289 (2004).

    Article  ADS  Google Scholar 

  113. J. Southworth, B. Smalley, P. F. L. Maxted, et al., “Absolute Dimensions of Detached Eclipsing Binaries. I. The Metallic-Lined System WW Aurigae,” Mon. Not. R. Astron. Soc. 363, 529–542 (2005).

    Article  ADS  Google Scholar 

  114. R. K. Srivastava, “A New Period and Period Changes in VZ Hydrae,” Astrophys. Space Sci. 133, 71–79 (1987).

    Article  ADS  Google Scholar 

  115. R. K. Srivastava, “An Analysis of the Light Changes of the Eclipsing Binary XY Ceti in the Frequency-Domain,” Astrophys. Space Sci. 138, 197–2007 (1987).

    Article  ADS  Google Scholar 

  116. J. B. Srivastava and C. D. Kandpal, “Photoelectric Elements of the Eclipsing Binary TX Leo,” Bull. Astron. Inst. Czech. 19, 381–389 (1968).

    ADS  Google Scholar 

  117. T. E. Sterne, “Apsidal Motion in Binary Stars,” Mon Not. R. Astron. Soc. 99, 451–462 (1939).

    ADS  MATH  Google Scholar 

  118. D. J. Stickland, R. H. Koch, and R. J. Pfeiffer, “Spectroscopic Binary Orbits from Ultraviolet Radial Velocities. X. CW Cephei (HD 218066),” Observatory 112, 277–281 (1992).

    ADS  Google Scholar 

  119. M. A. Svechnikova, L. F. Istomin, and O. A. Grekhova, “Elaboration and Application of Prime Criteria for Mass Classification of the Eclipsing Binaries. II. Classifications of Eclipsing Variables from the General Catalogue of Variable Stars, III Edition and Its Applications,” Variable Stars 21, 413–443 (1980).

    ADS  Google Scholar 

  120. M. A. Svechnikov and E. L. Perevozkina, Catalogue of Orbital Elements, Masses and Luminosities of Variable Stars of DMS-Type and Some Results of Its Statistical Treatment (Yekaterinburg, Ural State Univ., 1999), pp. 1–5, ftp://cdsarc.u-strasbg.fr/pub/cats/V/121.

    Google Scholar 

  121. D. Terrell, U. Munari, and A. Siviero, “Observational Studies of Early-Type Binary Stars: VV Orionis,” Mon. Not. R. Astron. Soc. 374, 530–534 (2007).

    Article  ADS  Google Scholar 

  122. J. Tomkin, “Secondaries of Eclipsing Binaries. V. EK Cephei,” Astrophys. J. 271, 717–724 (1983).

    Article  ADS  Google Scholar 

  123. J. Tomkin and D. M. Popper, “Rediscussion of Eclipsing Binaries. XV-Alpha Coronae Borealis, a Main-Sequence System with Components of Types A and G,” Astron. J. 91, 1428–1437 (1986).

    Article  ADS  Google Scholar 

  124. G. Torres, J. Andersen, B. Nordstrom, and D. W. Latham, “Absolute Dimensions of Eclipsing Binaries. XXIII. The F-Type System EI Cephei,” Astron. J. 119, 1942–1955 (2000).

    Article  ADS  Google Scholar 

  125. G. Torres, R. P. Stefanik, J. Andersen, et al., “The Absolute Dimensions of Eclipsing Binaries. XXII. The Unevolved F-Type System HS Hydrae,” Astron. J. 114, 2764–2777 (1997).

    Article  ADS  Google Scholar 

  126. J.-L. Trudel, J. D. Fernie, and S. Mochnacki, “The Eclipsing Binary EG Serpentis,” Astron. J. 105, 2291–2298 (1993).

    Article  ADS  Google Scholar 

  127. W. V. van Hamme, “Period Changes in Detached Close Binary Systems Due to Anisotropic Ejection of Mass,” Astron. Astrophys. 107, 397–401 (1982).

    ADS  Google Scholar 

  128. W. V. Van Hamme, D. S. Hall, A. W. Hargrove, et al., “The Two Variables in the Triple System HR 6469 = V819 Her: One Eclipsing, One Spotted,” Astron. J. 107, 1521–1528 (1994).

    Article  ADS  Google Scholar 

  129. L. P. R. Vaz and J. Andersen, “Absolute Dimensions of Eclipsing Binaries. IV. PV Puppis, a Detached Late A-Type System with Equal, Intrinsically Variable Components,” Astron. Astrophys. 132, 219–228 (1984).

    ADS  Google Scholar 

  130. L. P. R. Vaz, J. Andersen, and A. Claret, “Absolute Dimensions of Eclipsing Binaries. XXV. U Ophiuchi and the Evolution and Composition of 5 Mo Stars,” Astron. Astrophys. 469, 285–296 (2007).

    Article  ADS  Google Scholar 

  131. N. H. Volgenau, E. F. Guinan, P. B. Etzel, et al., “Eclipsing Binaries as Astrophysical Laboratories: Probing the Internal Structure of the Moderate Mass Stars of CO Lacertae,” in Proceedings of the 186th Amer. Astron. Society Meeting, BAAS 27, 878 (1995).

    Google Scholar 

  132. I. M. Volkov, “The Discovery of Apsidal Motion in the Binary System Alpha CrB,” IBVS, No. 3876 (1993).

  133. D. B. Williams, M. E. Baldwin, and D. H. Kaiser, “Photometry of the New Eclipsing Binary DHK 16 = SAO 80992,” IBVS, No. 3514 (1990).

  134. M. Wolf, “Apsidal Motion in Southern Eccentric Eclipsing Binaries: YY Sgr, V523 Sgr, V1647 Sgr, V2283 Sgr and V760 Sco,” Astron. Astrophys. 356, 134–140 (2000).

    ADS  Google Scholar 

  135. M. Wolf, R. Diethelm, and K. Hornoch, “Apsidal Motion in Eccentric Eclipsing Binaries: TV Ceti and V451 Ophiuchi,” Astron. Astrophys. 374, 243–249 (2001).

    Article  ADS  Google Scholar 

  136. M. Wolf, R. Diethelm, and L. Sarounova, “Apsidal Motion and Light-Time Effect in the Eclipsing Binaries RU Monocerotis and DR Vulpeculae,” Astron. Astrophys. 345, 553–558 (1999).

    ADS  Google Scholar 

  137. M. Wolf, P. Harmanec, R. Diethelm, et al., “Apsidal Motion and Light-Time Effect in Eclipsing Binaries HS Herculis and U Ophiuchi,” Astron. Astrophys. 383, 533–539 (2002).

    Article  ADS  Google Scholar 

  138. M. Wolf, H. Kusakova, M. Kolasa, et al., “Apsidal Motion in Eccentric Eclipsing Binaries: CW Cephei, V478 Cygni, AG Persei, and IQ Persei,” Astron. Astrophys. 456, 1077–1083 (2006).

    Article  ADS  Google Scholar 

  139. M. Wolf, L. Sarounova, V. S. Kozyreva, and T. Pogrocheva, “Eccentric Eclipsing Binary Stars as Test of General Relativity: The Case of EW Orionis,” IBVS, No. 4542 (1997).

  140. M. Wolf and M. Zejda, “Apsidal Motion in Southern Eccentric Eclipsing Binaries: V539 Ara, GG Lup, V526 Sgr and AO Vel,” Astron. Astrophys. 437, 545–551 (2005).

    Article  ADS  Google Scholar 

  141. K. Yakut, C. Aerts, and T. Morel, “The Early-Type Close Binary CV Velorum Revisited,” Astron. Astrophys. 467, 647–655 (2007).

    Article  ADS  Google Scholar 

  142. A. Young, “A Spectroscopic Orbit for the AM Eclipsing System AN Andromedae,” Publ. Astron. Soc. Pacif. 86, 63–66 (1974).

    Article  ADS  Google Scholar 

  143. J.-P. Zahn, “Les marées dans une étoile double serrée,” Ann. Astrophys. 29, 313–330; 489–506; 565–591 (1966).

    ADS  Google Scholar 

  144. J.-P. Zahn, “Forced Oscillations in Close Binaries. The Adiabatic Approximation,” Astron. Astrophys. 4, 452–461 (1970).

    ADS  Google Scholar 

  145. J.-P. Zahn, “The Dynamical Tide in Close Binaries,” Astron. Astrophys. 41, 329–344 (1975).

    ADS  Google Scholar 

  146. J.-P. Zahn, “Tidal Friction in Close Binary Stars,” Astron. Astrophys. 57, 383–394 (1977).

    ADS  Google Scholar 

  147. J.-P. Zahn, “Tidal Effects in Close Binary Stars,” in Proceedings of the IAU Symposium No. 105, Observational Tests of the Stellar Evolutionary Theory, Ed. by A. Maeder and A. Renzini (Reidel, Dordrecht, 1984), pp. 379–389.

    Google Scholar 

  148. J.-P. Zahn, “Tidal Evolution of Close Binary Stars. I. Revisiting the Theory of the Equilibrium Tide,” Astron. Astrophys. 220, 112–116 (1989).

    ADS  Google Scholar 

  149. P. Zasche and M. Wolf, “Combining Astrometry with the Light-Time Effect: The Case of VW Cep, ζ Phe and HT Vir,” Astron. Nachr. 328, 928–937 (2007).

    Article  ADS  Google Scholar 

  150. J. Ziznovsky, “Noncircular Orbit of TU Cam,” IBVS, No. 2251 (1982).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. N. Dremova.

Additional information

Original Russian Text © G.N. Dremova, M.A. Svechnikov, 2011, published in Kinematika i Fizika Nebesnykh Tel, 2011, Vol. 27, No. 2, pp. 8–30.

About this article

Cite this article

Dremova, G.N., Svechnikov, M.A. Calculation of tidal-evolution constants for close binary systems. Kinemat. Phys. Celest. Bodies 27, 62–78 (2011). https://doi.org/10.3103/S0884591311020048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591311020048

Keywords

Navigation