Skip to main content
Log in

Horizontal convective velocity field obtained from the observations of the solar limb

  • Solar Physics
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

Structure of horizontal convective currents in the solar atmosphere has been investigated using profiles of the λ ≈ 532.42 nm neutral iron line which were observed at the solar limb with high spatial resolution. The asymmetry of the observed line was shown to arise when approaching the solar limb. The spatial and time velocity variations were simulated using the λ-meter technique. Acoustic waves were removed using the k-ω filters. The convection currents on various spatial scales were distinguished, namely, those connected with granulation, mesogranulation, and supergranulation. The spatial and time distribution of the convection velocities in the photosphere and in the low chromosphere has been analyzed. The horizontal currents were shown to exist on granulation, mesogranulation, and supergranulation scales as low as h ≈ 250 km, and the granulation and mesogranulation horizontal velocities increase with height. In the photospheric layers, the supergranulation vertical-velocity field appears almost invariable, while the supergranulation horizontal-velocity field can vary with height. The horizontal velocity distribution within large convection currents is found to be asymmetric on granulation, mesogranulation, and supergranulation scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. N. Atroshchenko, A. S. Gadun, S. I. Gopasyuk, et al., Global Solar Characteristics Variations, Ed. by E. A. Gurtovenko (Nauk. Dumka, Kiev, 1991) [in Russian].

    Google Scholar 

  2. I. N. Antroshchenko, A. S. Gadun, and R. I. Kostyk, “Fine Structure of Fraunhofer Lines: Observation Results and Interpretation,” Kinem. Fiz. Nebes. Tel 6(6), 3–20 (1990).

    ADS  Google Scholar 

  3. R. I. Kostyk and N. G. Shchukina, “Five-Minute Oscillations and the Fine Structure of the Solar Photosphere. I,” Kinem. Fiz. Nebes. Tel 15(1), 25–37 (1999).

    ADS  Google Scholar 

  4. M. I. Stodilka, “Temperature Structure of Real Solar Granulation,” Kinem. Fiz. Nebes. Tel 19, 407–416 (2003).

    ADS  Google Scholar 

  5. M. I. Stodilka, O. A. Baran, and S. Z. Malinich, “Peculiarities of the Convection in the Solar Photosphere,” Kinem. Fiz. Nebes. Tel 22, 173–182 (2006).

    ADS  Google Scholar 

  6. M. I. Stodilka and O. A. Baran, “Structure of the Solar Photospheric Convection on Subgranulation Scales,” Kinem. Fiz. Nebes. Tel 24, 99–109 (2008).

    Google Scholar 

  7. M. G. Adam, P. A. Ibbetson, and A. D. Petford, “The Solar Limb Effect. Observations of Line Contours and Line Shifts,” Mon. Not. R. Astr. Soc. 177, 678–708 (1976).

    Google Scholar 

  8. M. C. M. Cheung and F. Moreno-Insertis, “The Origin of the Reversed Granulation in the Solar Photosphere,” Astron. Astrophys. 461, 1163–1171 (2007).

    Article  ADS  Google Scholar 

  9. M. L. DeRosa and J. Toomre, “Evolution of Solar Supergranulation,” Astrophys. J. 616, 1242–1260 (2004).

    Article  ADS  Google Scholar 

  10. F.-L. Deubner, “Mesogranulation — A Convective Phenomenon,” Astron. Astrophys. 216, 259–264 (1989).

    ADS  Google Scholar 

  11. D. Dravins, “Photospheric Spectrum Line Asymmetries and Wavelength Shifts,” Ann. Rev. Astron. Astrophys. 2, 61–89 (1982).

    Article  ADS  Google Scholar 

  12. O. Espagnet, R. Muller, T. Roudier, N. Mein, and P. Mein, “Penetration of the Solar Granulation Into the Photosphere: Height Dependence of Intensity and Velocity Fluctuations,” Astron. Astrophys. Suppl. Ser. 109, 79–108 (1995).

    ADS  Google Scholar 

  13. A. S. Gadun, A. Hanslmeier, K. N. Pikalov, S. R. O. Ploner, K. G. Puschmann, and S. K. Solanki, “Size-Dependent Properties of Simulated 2-D Solar Granulation,” Astron. Astrophys. Suppl. Ser 146, 267–291 (2000).

    Article  ADS  Google Scholar 

  14. L. Gizon, T. L. Duvall, and J. Schou, “Wave-Like Properties of Solar Supergranulation,” Nature 421(6918), 43–44 (2003).

    Article  ADS  Google Scholar 

  15. E. A. Gurtovenko, “The Total Photospheric Motion Field,” Solar Phys. 45, 25–33 (1975).

    Article  ADS  Google Scholar 

  16. J. Halm, “Über Eine Bisher Unbekannte Verschiebung Der Fraunhoferschen Linien Des Sonnenspektrums,” Astron. Nachrichten 173, 273–288 (1907).

    Article  ADS  Google Scholar 

  17. D. H. Hathaway, J. G. Beck, S. Han, and J. Raymond, “Radial Flows in Supergranules,” Solar Phys. 205, 25–38 (2002).

    Article  ADS  Google Scholar 

  18. E. V. Khomenko, R. I. Kostik, and N. G. Shchukina, “Five-Minute Oscillations Above Granules and Intergranular Lanes,” Astron. Astrophys. 369, 660–671 (2001).

    Article  ADS  Google Scholar 

  19. R. Komm, W. Mattig, and A. Nesis, “The Small-Scale Velocity Field in the Solar Photosphere,” Astron. Astrophys. 243, 251–262 (1991).

    ADS  Google Scholar 

  20. R. I. Kostik, “Fine Structure of Fraunhofer Lines and the Structure of the Solar Atmosphere,” Sov. Astron. 29, 65–71 (1985).

    ADS  Google Scholar 

  21. R. I. Kostik, “Fine Structure of Convective Motions in the Solar Photosphere,” Kinem. Fiz. Nebes. Tel 5 (Suppl.), 134–137 (2005).

    Google Scholar 

  22. C. Marmolino and G. Severino, “The Third Central Moment of Photospheric Lines As a Measure of Velocity Gradients and Line Shifts,” Astron. Astrophys. 100, 191–193 (1981).

    ADS  Google Scholar 

  23. I. Marquez, J. A. Bonet, M. Vazquez, and H. Woehl, “Numerical Modeling of Spectral Line Asymmetries in Photospheric Structures. I. Quiet Sun,” Astron. Astrophys. 305, 305–316 (1996).

    ADS  Google Scholar 

  24. L. Matloch, R. Cameron, and D. Schmitt, “Solar Mesogranulation As a Cellular Automaton Effect,” Mod. Solar Facilit.-Adv. Solar Sci., 339–342 (2007).

  25. A. Nordlund, R. F. Stein, and M. Asplund, “Solar Surface Convection,” Living Rev. Solar Phys. 6(2) (2009).

  26. L. J. November, J. Toomre, K. B. Gebbie, and G. W. Simon, “The Detection of Mesogranulation on the Sun,” Astrophys. J. Part 2 245, L123–L126 (1981).

    Article  ADS  Google Scholar 

  27. L. J. November, “The Vertical Component of the Supergranular Convection,” Astrophys. J. 344, 494–503 (1989).

    Article  ADS  Google Scholar 

  28. L. J. November, “Inferring the Depth Extent of the Horizontal Supergranular Flow,” Solar Phys. 154, 1–17 (1994).

    Article  ADS  Google Scholar 

  29. S. R. O. Ploner, S. K. Solanki, and A. S. Gadun, “Is Solar Mesogranulation a Surface Phenomenon?,” Astron. Astrophys. 356, 1050–1054 (2000).

    ADS  Google Scholar 

  30. M. P. Rast, “The Scales of Granulation, Mesogranulation, and Supergranulation,” Astrophys. J. 597, 1200–1210 (2003).

    Article  ADS  Google Scholar 

  31. M. Rieutord, T. Roudier, J. M. Malherbe, and F. Rincon, “On Mesogranulation, Network Formation and Supergranulation,” Astron. Astrophys. 357, 1063–1072 (2000).

    ADS  Google Scholar 

  32. Th. Roudier, J. M. Malherbe, J. Vigneau, and B. Pfeiffer, “Solar Mesogranule Lifetime Measurements,” Astron. Astrophys. 330, 1136–1144 (1998).

    ADS  Google Scholar 

  33. Th. Roudier and R. Muller, “Relation Between Families of Granules, Mesogranules and Photospheric Net-work,” Astron. Astrophys. 419, 757–762 (2004).

    Article  ADS  Google Scholar 

  34. N. G. Shchukina, V. L. Olshevsky, and E. Khomenko, “Solar BaII, 4554 A Line as Doppler Diagnostics: NLTE Analysis in 3D Hydrodynamical Model,” arXiv:0905:0985 (2009).

  35. H. C. Spruit, A. Nordlund, and A. M. Title, “Solar Convection,” Ann. Rev. Astron. Astrophys. 28, 263–301 (1990).

    Article  ADS  Google Scholar 

  36. R. Stebbins and P. R. Goode, “Waves in the Solar Photosphere,” Solar Phys. 110, 237–253 (1987).

    Article  ADS  Google Scholar 

  37. R. F. Stein and A. Nordlund, “Simulations of Solar Granulation. I. General Properties,” Astrophys. J. 499, 914–933 (1998).

    Article  ADS  Google Scholar 

  38. T. Straus and D. Bonaccini, “Dynamics of the Solar Photosphere. I. Two-Dimensional Spectroscopy of Mesoscale Phenomena,” Astron. Astrophys. 324, 704–712 (1997).

    ADS  Google Scholar 

  39. M. Svanda, M. Klnana, and M. Sobotka, “Motions of Supergranular Structures on the Solar Surface,” Hvar Observ. Bull. 29, 39–48 (2005).

    ADS  Google Scholar 

  40. S. Ueno and R. Kitai, “3D Velocity-Field Observation of Solar Convection I. Characteristics of Mesogranulation,” Publ. Astron. Soc. Jpn. 50, 125–139 (1998).

    ADS  Google Scholar 

  41. J. E. Vernazza, E. H. Avrett, and R. Loeser, “Structure of the Solar Chromosphere. III. Models of the EUV Brightness Components of the Quiet-Sun,” Astrophys. J. Suppl. Ser. 45, 635–725 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © O.A. Baran, M.I. Stodilka, 2010, published in Kinematika i Fizika Nebesnykh Tel, 2010, Vol. 26, No. 3, pp. 34–49.

About this article

Cite this article

Baran, O.A., Stodilka, M.I. Horizontal convective velocity field obtained from the observations of the solar limb. Kinemat. Phys. Celest. Bodies 26, 117–129 (2010). https://doi.org/10.3103/S0884591310030037

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591310030037

Keywords

Navigation