Skip to main content
Log in

Quasar correlation function and redshift space distortion from SDSS DR5 data

  • Structure and Dynamics of the Galaxy
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

For z = 0.8–2.2 redshift interval, quasar pair correlation function parameters and β redshift space distortion parameter (connected to large-scale potential flows) values are estimated. We base them on the Main QSO Sample from SDSS Data Release 5. Standard correlation function form ξ(r) = (r 0/r)γ is used for comoving distances r = 2–50 Mpc between quasars. We fix the parameters of the cosmological model: ΩΛ = 1 − Ω M = 0.726 and H 0 = 70.5 km/(s Mpc). We come to the best-fit parameter values of γ = 1.77 ± 0.20, r 0 = 5.52 ± 0.95 Mpc/h for r in the range 2–30 Mpc, γ = 1.91 ± 0.11, r 0 = 5.82 ± 0.61 Mpc for r in the range 2–50 Mpc. The mean β value is β = 0.43 ± 0.22.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Zhdanov and A. Yu. Ivashchenko, “Correlation Function of Quasars from SDSS DR3,” Kinem. Fiz. Neb. Tel, No. 1, 3–14 (2008) [Kinem. Phys. Cel. Bodies 24, pp1 (2008)].

  2. P. J. E. Peebles, Large-Scale Structure of the Universe (Princeton Univ., Princeton, 1980; Mir, Moscow, 1983).

    Google Scholar 

  3. J. L. Synge, Relativity: The General Theory (North-Holland, Amsterdam, 1960; Inostr. Liter., Moscow, 1963).

    MATH  Google Scholar 

  4. Ya. S. Yatskiv, O. M. Aleksandrov, I. B. Vavilova, et al., The General Theory of Relativity: The Test of Time (GAO NAN Ukraini, Kiyv, 2005) [in Ukrainian].

    Google Scholar 

  5. C. Alcock and B. Paczynski, “An Evolution Free Test for Non-Zero Cosmological Constant,” Nature 281, 358–359 (1979).

    Article  ADS  Google Scholar 

  6. W. E. Ballinger, J. A. Peacock, and A. F. Heavens, “Measuring the Cosmological Constant with Redshift Surveys,” Mon. Not. R. Astron. Soc. 282, 877–888 (1996).

    ADS  Google Scholar 

  7. S. M. Croom, B. J. Boyle, T. Shanks, et al., “The 2dF QSO Redshift Survey. XIV. Structure and Evolution from the Two-Point Correlation Function,” Mon. Not. R. Astron. Soc. 356, 415–438 (2005).

    Article  ADS  Google Scholar 

  8. J. da Angela, P. J. Outram, and T. Shanks, “The 2dF QSO Redshift Survey. XV. Correlation Analysis of Redshift-Space Distortions,” Mon. Not. R. Astron. Soc. 360, 1040–1054 (2005).

    Article  ADS  Google Scholar 

  9. J. da Angela, P. J. Outram, and T. Shanks, “Constraining β(z) and Ω 0M from Redshift-Space Distortions in Z 3 Galaxy Surveys,” Mon. Not. R. Astron. Soc. 361, 879–886 (2005).

    Article  ADS  Google Scholar 

  10. J. da Angela, T. Shanks, S. M. Croom, et al., “2dF-SDSS LRG and QSO Survey: QSO Clustering and L-z degeneracy,” Mon. Not. R. Astron. Soc. 383, 565–580 (2008).

    ADS  Google Scholar 

  11. A. J. S. Hamilton, “Measuring Ω and the Real Correlation Function from the Redshift Correlation Function,” Astrophys. J. 385, L5–L8 (1992).

    Article  ADS  Google Scholar 

  12. E. Hawkins, S. Madox, S. Cole, et al., “The 2dF Galaxy Redshift Survey: Correlation Functions, Peculiar Velocities and the Matter Density in the Universe,” Mon. Not. R. Astron. Soc. 346, 78–96 (2003).

    Article  ADS  Google Scholar 

  13. J. F. Hennawi, M. A. Strauss, M. Oguri, et al., “Binary Quasars in the Sloan Digital Sky Survey: Evidence for Excess Clustering on Small Scales,” Astron. J. 131, 1–23 (2006).

    Article  ADS  Google Scholar 

  14. G. Hinshaw, J. L. Weiland, R. S. Hill, and N. Degrade, “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, and Basic Results,” arXiv:0803.0732 (2008).

  15. F. Hoyle, P. J. Outram, T. Shanks, et al., “The 2dF QSO Redshift Survey. VII. Constraining Cosmology from Redshift-Space Distortions Via ξ(σ, π),” Mon. Not. R. Astron. Soc. 332, 311–334 (2002).

    Article  ADS  Google Scholar 

  16. N. Kaiser, “Clustering in the Real Space and in the Redshift Space,” Mon. Not. R. Aston. Soc. 227, 1–21 (1987).

    ADS  Google Scholar 

  17. I. D. Karachentsev, M. E. Sharina, D. I. Makarov, et al., “The Very Local Hubble Flow,” Astron. Astrophys. 389, 812–824 (2002).

    Article  ADS  Google Scholar 

  18. E. Komatsu, J. Dunkley, M. R. Nolta, et al., “Five-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation,” arXiv:0803/0547 (2008).

  19. T. Matsubara and Ya. Suto, “Cosmological Redshift Distortion of Correlation Functions As a Probe of the Density Parameter and the Cosmological Constant,” Astrophys. J. Lett. 470, L1–L5 (1996).

    Article  ADS  Google Scholar 

  20. G. Mountrichas, T. Shanks, S. M. Croom, et al., “QSO LRG 2-Point Cross-Correlation Function and Red-shift-Space Distortions,” arXiv:0801.1816 (2008).

  21. A. D. Myers, R. J. Brunner, R. C. Nichol, et al., “Clustering Analyses of 300000 Photometrically Classified Quasars. I. Luminosity and Redshift Evolution in Quasar Bias,” Astrophys. J. 658, 85–98 (2007).

    Article  ADS  Google Scholar 

  22. P. S. Osmer, “The Three-Dimentional Distribution of Quasars in the CTIO Surveys,” Astrophys. J. 247, 762–773 (1981).

    Article  ADS  Google Scholar 

  23. P. J. Outram, F. Hoyle, T. Shanks, et al., “The 2dF QSO Redshift Survey. VI. Measuring Λ and β from Redshift-Space Distortions in the Power Spectrum,” Mon. Not. R. Astron. Soc. 328, 174–184 (2001).

    Article  ADS  Google Scholar 

  24. P. J. Outram, T. Shanks, B. J. Boyle, et al., “The 2dF QSO Redshift Survey. XIII. A Measurement of Λ from the Quasi-Stellar Object Power Spectrum, P S(k P, k ),” Mon. Not. R. Astron. Soc. 348, 745–752 (2004).

    Article  ADS  Google Scholar 

  25. S. L. Parnovsky, P. Yu. Sharov, and O. Z. Gaidamaka, “Estimation of Cosmological Parameters from Peculiar Velicities of Flat Edge-on Galaxies,” Astrophys. Space Sci. 302, 207–211 (2006).

    Article  ADS  Google Scholar 

  26. C. Porciani, M. Magliocchetti, and P. Norberg, “Cosmic Evolution of Quasar Clustering: Implications for the Host Haloes,” Mon. Not. R. Astron. Soc. 355, 1010–1030 (2004).

    Article  ADS  Google Scholar 

  27. N. P. Ross, J. Angela, T. Shanks, et al., “The 2dF-SDSS LRG and QSO Survey: The LRG 2-Point Correlation Function and Redshift-Space Distortions,” Mon. Not. R. Astron. Soc. 381, 573–588 (2007).

    Article  ADS  Google Scholar 

  28. D. P. Schneider, P. B. Hall, G. T. Richards, et al., “The Sloan Digital Sky Survey Quasar Catalog IV. Fifth Data Release,” Astron. J. 134, 102–117 (2007).

    Article  ADS  Google Scholar 

  29. R. Scranton, D. Johnston, S. Dodelson, et al., “Analysis of Systematic Effects and Statistical Uncertainties in Angular Clustering of Galaxies Fromearly Sloan Digital Sky Survey Data,” Astrophys. J. 579, 48–75 (2002).

    Article  ADS  Google Scholar 

  30. B. C. Thomas, A. L. Mellot, H. A. Feldman, and S. F. Shandarin, “Quantifying the Bul’s Eye Effect,” Astrophys. J. 601, 28–36 (2004).

    Article  ADS  Google Scholar 

  31. S. Zaroubi, “Cosmic Flows: Review of Recent Developments,” XIII Recontres de Blois’ Frontiers of the Universe’, arXiv: astro-ph/0206052 (2001).

  32. I. Zehavi, M. R. Blanton, J. A. Frieman, et al., “Galaxy Clustering in Early Sloan Digital Sky Survey Redshift Data,” Astophys. J. 571, 172–190 (2002).

    Article  ADS  Google Scholar 

  33. V. I. Zhdanov and J. Surdej, “Quasar Pairs with Arcminute Angular Separations,” Astron. Astrophys. 372, 1–7 (2001).

    Article  ADS  Google Scholar 

  34. V. I. Zhdanov and J. Surdej, “Physicalgrouping of Quasars from Veon-Cetty & Veron and 2dF catalogs,” Visnik Kiiv Univ. Astron. 39-40, 78–80 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.Yu. Ivashchenko, V.I. Zhdanov, 2010, published in Kinematika i Fizika Nebesnykh Tel, 2010, Vol. 26, No. 1, pp. 43–56.

About this article

Cite this article

Ivashchenko, A.Y., Zhdanov, V.I. Quasar correlation function and redshift space distortion from SDSS DR5 data. Kinemat. Phys. Celest. Bodies 26, 18–25 (2010). https://doi.org/10.3103/S0884591310010022

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591310010022

Keywords

Navigation