Kinematics and Physics of Celestial Bodies

, Volume 23, Issue 3, pp 108–115 | Cite as

Determining the masses of large asteroids by the dynamical method

  • A. V. Ivantsov
Dynamics and Physics of Bodies of the Solar System


The masses of 21 main-belt asteroids were determined by the dynamical method. The masses of 13 asteroids have relative errors of less than 50 percent. When earlier positional observations are excluded and recent, highly accurate ones are used, the error of asteroid mass determination is reduced.

PACS numbers

96.30.Ys 96.25.-f 96.25.Bd 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Vasil’ev, M.V. and Yagudina, E.I., Determining the Masses of 26 Selected Minor Planets on the Basis of the Analysis of Observations of Their Approaches to Asteroids of Smaller Masses, Trudy In-ta Prikladnoi Astronomii RAN, 1999, vol. 4, pp. 98–115.Google Scholar
  2. 2.
    Ivantsov, A.V., Dynamical Model of Motion for Asteroids Based on the DE405 Theory, Kinematika i Fizika Nebes. Tel, 2007, vol. 23, no. 2, pp. 1–7.Google Scholar
  3. 3.
    Kochetova, O.M., Determination of Masses of Some Large Asteroids by the Dynamical Method, Astron. Vestnik, 2003, vol. 37, no. 6, pp. 1–11.Google Scholar
  4. 4.
    Kochetova, O.M., Application of New Criteria for the Selection of Perturbed Minor Planets to the Determination of the Masses of Perturbing Minor Planets by the Dynamical Method, Soobshch. In-ta Prikladnoi Astronomii RAN, 2003, no. 165, p. 42.Google Scholar
  5. 5.
    Mosteller, F. and Tukey, J.W., Data Analysis and Regression, Reading, MA: Addison-Wesley, 1977.Google Scholar
  6. 6.
    Sansone, G., Obyknovennye differentsial’nye uravneniya (Ordinary Differential Equations), Moscow: Inostr. Lit-ra, 1953.Google Scholar
  7. 7.
    Ustoichivye statisticheskie metody otsenki dannykh (Stable Statistical Methods of Data Estimation), Lohner, R.L. and Wilkinson, G.N., Eds., Moscow: Mashinostroenie, 1984.Google Scholar
  8. 8.
    Herrick, S., Astrodynamics, London: Van Nostrand Reinhold, 1971, vol. 1.zbMATHGoogle Scholar
  9. 9.
    Aslan, Z., Gumerov, R., Hudkova, L., et al., Observational Programs and First Results of Selected Asteroid Observations at RTT150 within International Cooperation, Roman. Astron. J., 2006, vol. 16,Suppl., pp. 11–17.Google Scholar
  10. 10.
    Britt, D.T., Yeomans, D., Housen, K., and Consolmagno, G., Asteroid Density, Porosity, and Structure, Asteroids III, Bottke, W. F., Cellino, A., Paolicchi, P., and Binzel, R. P., Eds., Tucson: Univ. of Arizona, 2002, pp. 485–500.Google Scholar
  11. 11.
    Hertz, H.G., The Mass of Vesta, IAU Circ., 1966, no. 1983.Google Scholar
  12. 12.
    Hilton, J.L., Seidelmann, P.K., and Middour, J., Prospects for Determining Asteroid Masses // Astron. J., 1996, vol. 112, no. 5, pp. 2319–2329.CrossRefADSGoogle Scholar
  13. 13.
    Kaplan, G.H., Hughes, J.A., Seidelmann, P.K., et al., Mean and Apparent Place Computations in the New IAU System. III. Apparent, Topocentric, and Astrometric Places of Planets and Stars // Astron. J., 1989, vol. 97, no. 4, pp. 1197–1210.CrossRefADSGoogle Scholar
  14. 14.
    Krasinsky, G.A., Pitjeva, E.V., Vasilyev, M.V., and Yagudina, E.I., Estimating Masses of Asteroids, Soobshch. In-ta Prikladnoi Astronomii RAN, 2001, no. 139, p. 43.Google Scholar
  15. 15.
    Landgraf, W., The Mass of Ceres, Astron. and Astrophys., 1988, vol. 191, no. 1, pp. 161–166.ADSGoogle Scholar
  16. 16.
    Pitjeva, E.V., Progress in the Determination of Some Astronomical Constants from Radiometric Observations of Planets and Spacecraft, Astron. and Astrophys., 2001,. vol. 371, no. 2, pp. 760–765.CrossRefADSGoogle Scholar
  17. 17.
    Standish, E.M., JPL Planetary and Lunar Ephemerides, DE405/LE405, JPL IOM 312.F-98-048, 1998, pp. 1–18.Google Scholar

Copyright information

© Allerton Press, Inc. 2007

Authors and Affiliations

  • A. V. Ivantsov
    • 1
  1. 1.Nikolaev Astronomical ObservatoryMinistry of Education and ScienceNikolaevUkraine

Personalised recommendations