Skip to main content
Log in

WMAP-2006: Cosmological parameters and large-scale structure of the universe

  • Extragalactic Astronomy
  • Published:
Kinematics and Physics of Celestial Bodies Aims and scope Submit manuscript

Abstract

The parameters of the cosmological model with cold dark matter and cosmological constant (ΛCDM model) were determined using three-year Wilkinson Microwave Anisotropy Probe observations of cosmic microwave background together with some data on the large-scale structure of the universe. The data cover scales from 1 to 10 000 Mpc. The best-fit ΛCDM model parameters were derived by minimizing the x 2 statistic with the use of the Levenberg-Markquardt approach (ΩΛ = 0.736 ± 0.065, Ωm = 0.238 ± 0.080, Ωb = 0.05 ± 0.011, h = 0.68 ± 0.09, σ8 = 0.73 ± 0.08, and n s = 0.96 ± 0.015). The ΛCDM model with these parameters is shown to agree well with the angular power spectrum of cosmic microwave background temperature fluctuations and with the density perturbation power spectra estimated from spatial distributions of galaxies and rich clusters of galaxies as well as from the statistics of the Ly α absorption lines in the spectra of distant quasars. The accord between the model large-scale structure characteristics and the observed ones is analyzed, and conceivable factors causing appreciable discrepancies between some characteristics are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novosiadlyi, B. and Apunevych, S., Cosmological Restrictions on the Amplitude of Relic Gravitational Waves, Zhurn. Fiz. Doslidzhen’, 2005, vol. 9, pp. 280–291.

    Google Scholar 

  2. Apunevych, S. and Novosyadlyj, B., Constraints on Relic Gravitational Waves from CMB and LSS Observations, Proc. Gamov Memorial Conf., “Astrophysics and Cosmology After Gamov — Theory and Observations,” Zhuk, A., Bisnovaty-Kogan, G.S., Silich, S., and Terlevich, R., Eds, Cambridge: Sci. Publ. Ltd., 2005, pp. 105–112.

    Google Scholar 

  3. Bardeen, J.M., Bond, J.R., Kaiser, N., and Szalay, A.S., The Statistics of Peaks of Gaussian Random Fields, Astrophys. J., 1986, vol. 304, pp. 15–61.

    Article  ADS  Google Scholar 

  4. Bennett, C.L., Halpern, M., Hinshaw, G., et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Preliminary Maps and Basic Results, Astrophys. J. Suppl. Ser., 2003, vol. 148, pp. 1–28.

    Article  ADS  Google Scholar 

  5. Bunn, E.F. and White, M., The 4 Year COBE Normalization and Large-Scale Structure, Astrophys. J., 1997, vol. 480, pp. 6.

    Article  ADS  Google Scholar 

  6. Carroll, S.M., Press, W.H., and Turner, E.L., The Cosmological Constant, Annu. Rev. Astron. Astrophys., 1992, vol. 30, pp. 499–542.

    Article  ADS  Google Scholar 

  7. Challinor, A. and Lewis, A., Lensed CMB Power Spectra from All-Sky Correlation Functions, Phys. Rev., 2005, vol. D71, 103010.

  8. Croft, R.A.C., Hu, W., and Dave, R., Cosmological Limits on the Neutrino Mass from the Lyα forest, Phys. Rev. Lett., 1999, vol. 83, p. 1092.

    Article  ADS  Google Scholar 

  9. de Bernardis, P., Ade, P.A.R., Bock, J.J., et al., A Flat Universe From High-Resolution Maps of the Cosmic Microwave Background Radiation, Nature, 2000, vol. 404, pp. 995–999.

    Article  Google Scholar 

  10. Dekel, A., Eldar, A., Kolatt, T., et al., POTENT Reconstruction from Mark III Velocities, Astrophys. J., 1999, vol. 522, pp. 1–38.

    Article  ADS  Google Scholar 

  11. Doran, M., CMBEASY: an Object Oriented Code for the Cosmic Microwave Background, JCAP, 2005, 0510, 011.

    ADS  Google Scholar 

  12. Durrer, R. and Novosyadlyj, B., Cosmological Parameters from Complementary Observations of the Universe, Mon. Notic. Roy. Astron. Soc., 2001, vol. 324, pp. 560–572.

    Article  ADS  Google Scholar 

  13. Durrer, R., Novosyadlyj, B., and Apunevych, S., Acoustic Peaks and Dips in the Cosmic Microwave Background Power Spectrum: Observational Data and Cosmological Constraints, Astrophys. J., 2003, vol. 583, pp. 33–48.

    Article  ADS  Google Scholar 

  14. Eisenstein, D.J. and Hu, W., Power Spectra for Cold Dark Matter and Its Variants, Astrophys. J., 1999, vol. 511, pp. 5–15.

    Article  ADS  Google Scholar 

  15. Freedman, W.L., Madore, B.F., Gibson, B.K., et al., Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant, Astrophys. J., 2001, vol. 553, p. 47.

    Article  ADS  Google Scholar 

  16. Jarosik, N., Barnes, C., Greason, M.R., et al. Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characterization and Systematic Error Limits, Astrophys. J., 2006 (astro-ph/0603452).

  17. Halverson, N.W., Leitch, E.M., Pryke, C., et al. DASI First Results: a Measurement of the Cosmic Microwave Background Angular Power Spectrum, Astrophys. J., 2002, vol. 568, pp. 38–45.

    Article  ADS  Google Scholar 

  18. Hamilton, A.J.S. and Tegmark, M., The Real-Space Power Spectrum of the PSRCz Survey from 0.01 to 300 Mpc/h, Mon. Notic. Roy. Astron. Soc., 2002, vol. 330, pp. 506–530.

    Article  ADS  Google Scholar 

  19. Hanany, S., Ade, P., Balbi, A., et al., MAXIMA-1: a Measurement of Cosmic Microwave Background on Angular Scales of 10′-5°, Astrophys. J., 2000, vol. 545, pp. L5–L9.

    Article  ADS  Google Scholar 

  20. Hinshaw, G., Nolta, M.R., Bennett, C.L., et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Temperature Analysis, Astrophys. J., 2006 (astro-ph/0603451).

  21. Hinshaw, G., Spergel, D.N., Verde, L., et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: the Angular Power Spectrum, Astrophys. J. Suppl. Ser., 2003, vol. 148, pp. 135–159.

    Article  ADS  Google Scholar 

  22. Kirkman, D., Tytler, D., Suzuki, N., et al., The Cosmological Baryon Density from the Deuterium-to-Hydrogen Ratio in QSO Absorption Systems: D/H Toward Q1243+3047, Astrophys. J. Suppl. Ser., 2003, vol. 149, pp. 1–28.

    Article  ADS  Google Scholar 

  23. Kuo, C.L., et al., High-Resolution Observations of the Cosmic Microwave Background Power Spectrum with ACBAR, Astrophys. J., 2004, vol. 600, no. 1, pp. 32–51.

    Article  ADS  Google Scholar 

  24. Lee, A.T., Ade, P., Balbi, A., et al., High Spatial Resolution Analysis of the MAXIMA-1 Cosmic Microwave Background Anisotropy Data, Astrophys. J., 2001, vol. 561, pp. L1–L5.

    Article  ADS  Google Scholar 

  25. McDonald, P., Miralda-Escudé, J., Rauch, M., et al., The Observed Probability Distribution Function, Power Spectrum, and Correlation Function of the Transmitted Flux in the Ly alpha forest, Astrophys. J., 2000, vol. 543, pp. 1–23.

    Article  ADS  Google Scholar 

  26. Miller, C.J. and Batuski, D.J., The Power Spectrum of Rich Clusters on Near-Gigaparsec Scales, Astrophys. J., 2001, vol. 551, pp. 635–642.

    Article  ADS  Google Scholar 

  27. Netterfield, C.B., Ade, P.A.R., Bock, J.J., et al., A Measurement by BOOMERANG of Multiple Peaks in the Angular Power Spectrum of the Cosmic Microwave Background, Astrophys. J., 2002, vol. 571, pp. 604–614.

    Article  ADS  Google Scholar 

  28. Novosyadlyj, B. and Apunevych S., The Constraints on Power Spectrum of Relic Gravitational Waves from Current Observations of Large-Scale Structure of the Universe, Kinematics and Physics of Celestial Bodies. Suppl., 2005, vol. 5, pp. 199–204.

    Google Scholar 

  29. Page, L., Hinshaw, G., Komatsu, E., et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Polarization Analysis, Astrophys. J., 2006 (astro-ph/0603450).

  30. Perlmutter, S., Aldering, G., Goldhaber, G., et al., Measurements of Ω and Λ from 42 High-Redshift Supernovae, Astrophys. J., 1999, 517, pp. 565–586.

    Article  ADS  Google Scholar 

  31. Pierpaoli, E., Scott, D., and White, M., Power-Spectrum Normalization from the Local Abundance of Rich Clusters of Galaxies, Mon. Notic. Roy. Astron. Soc., 2001, vol. 325, pp. 77–88.

    Article  ADS  Google Scholar 

  32. Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., Numerical Recipes in FORTRAN. The Art of Scientific Computing, New York: Cambridge Univ., 1992.

    MATH  Google Scholar 

  33. Readhead, A.C.S., et al., Extended Mosaic Observations with the Cosmic Background Imager, Astrophys. J., 2004, vol. 609, pp. 498–512.

    Article  ADS  Google Scholar 

  34. Retzlaff, J., Borgani, S., Gottlober, S., et al. Constraining Cosmological Models with Cluster Power Spectra, New Astron. Rev., 1998, vol. 3, pp. 631–646.

    Article  Google Scholar 

  35. Seljak, U. and Zaldarriaga, M., A Line-of-Sight Integration Approach to Cosmic Microwave Background Anisotropies, Astrophys. J., 1996, vol. 469, pp. 437–444.

    Article  ADS  Google Scholar 

  36. Spergel, D.N., Bean, R., Dore, O., et al., Three-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Implications for Cosmology, Astrophys. J., 2006 (astro-ph/0603449).

  37. Spergel, D.N., Verde, L., Peiris, H.V., et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters, Astrophys. J. Suppl. Ser., 2003, vol. 148, pp. 175–194.

    Article  ADS  Google Scholar 

  38. Tegmark, M., Blanton, M.R., Strauss, M.A., et al., The Three-Dimensional Power Spectrum of Galaxies from the Sloan Digital Sky Survey, Astrophys. J., 2004, vol. 606, pp. 702–740.

    Article  ADS  Google Scholar 

  39. Tegmark, M., Zaldarriaga, M., and Hamilton, A.J.S., Towards a Refined Cosmic Concordance Model: Joint 11-Parameter Constraints from CMB and Large-Scale Structure, Phys. Rev. D., 2001, vol. 63, no. 4.

  40. Verde, L., Peiris, H.V., Spergel, D.N., et al., First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Parameter Estimation Methodology, Astrophys. J. Suppl. Ser., 2003, vol. 148, pp. 195–211.

    Article  ADS  Google Scholar 

  41. Viana, P.T.P. and Liddle, A.W., Galaxy Clusters at 0.3 < z < 0.4 and the Value of Ω0, Mon. Notic. Roy. Astron. Soc., 1999, vol. 303, pp. 535–545.

    Article  ADS  Google Scholar 

  42. Zaldarriaga, M. and Seljak, U., CMBFAST for Spatially Closed Universes, Astrophys. J. Suppl. Ser., 2000, vol. 129, no. 2, pp. 431–434.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Ukrainian Text © S. Apunevich, B. Venhl’ovska, Yu. Kulinich, B. Novosiadlyi, 2007, published in Kinematika i Fizika Nebesnykh Tel, 2007, Vol. 23, No. 2, pp. 67–82.

About this article

Cite this article

Apunevych, S., Venhl’ovska, B., Kulinich, Y. et al. WMAP-2006: Cosmological parameters and large-scale structure of the universe. Kinemat. Phys. Celest. Bodies 23, 45–55 (2007). https://doi.org/10.3103/S0884591307020018

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0884591307020018

PACS numbers

Navigation