Skip to main content
Log in

Observations of Earth Surface Deformations at the FSUE Radon Test Site

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The article presents the following: the results of deformation monitoring by GNSS tools at the FSUE Radon radioactive waste disposal site (Moscow oblast); a brief history of the development of the geodynamic observation network at the industrial site of Radon. the results and geodynamic interpretation of GNSS observations of Earth surface movements for 2008–2017. the results of studies on upgrading Radon’s geodynamic structure, taking into account the creation of a single digital space for the industrial site to manage its lifecycle. The article summarizes the experience in creating life cycle monitoring systems at radioactive waste disposal sites using modern digital measurement methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

REFERENCES

  1. Abrahamsen-Mills, L., Wareing, A., Fowler, L., Jarvis, R., Norris, S., and Banford, A., Development of a multi criteria decision analysis framework for the assessment of integrated waste management options for irradiated graphite, Nucl. Eng. Technol., 2021, vol. 53, no. 4, pp. 1224–1235. https://doi.org/10.1016/j.net.2020.10.008

    Article  Google Scholar 

  2. Akmatov, D.Zh., Nikolaichuk, V.V., Tikhonov, A.A., and Shevchuk, R.V., Radar interferometry as supplement to classical methods to observe Earth’s surface displacement, Gornaya Prom-st., 2020, no. 1, pp. 144–147. https://doi.org/10.30686/1609-9192-2020-1-144-147

  3. Altunas, C., Yildiz, F., and Scaioni, M., Laser scanning and data integration for three-dimensional digital recording of complex historical structures: The case of Mevlana Museum, ISPRS Int. J. Geo-Inf., 2016, vol. 5, no. 2, p. 18. https://doi.org/10.3390/ijgi5020018

    Article  Google Scholar 

  4. Barazzetti, L., Scaioni, M., and Remondino, F., Orientation and 3d modelling from markerless terrestrial images: Combining accuracy with automation, Photogrammetric Rec., 2010, vol. 25, no. 132, pp. 356–381. https://doi.org/10.1111/j.1477-9730.2010.00599.x

    Article  Google Scholar 

  5. Bobbitt, J., Vrettos, N., and Howard, M., R&P-reactor building in-situ decommissioning visualization, SRNL-STI-2010-00361, Aiken, S.C.: Savannah River National Laboratory, 2010.

    Google Scholar 

  6. Chen, Y., Cheng, L., Li, M., Wang, J., Tong, L., and Yang, K., Multiscale grid method for detection and reconstruction of building roofs from airborne lidar data, IEEE J. Sel. Top. Appl. Earth Observations Remote Sensing, 2014, vol. 7, no. 10, pp. 4081–4094. https://doi.org/10.1109/JSTARS.2014.2306003

    Article  Google Scholar 

  7. D’yakov, B.N., Comparative analysis of the Kostekhel and Marshak methods, Marksheiderskii Vestn., 2009, no. 6, pp. 43–46.

  8. GKINP (ONTA)-02-262-02: Geodesic, cartographic guidelines, standards, and regulations. Guideline to development of surveying justification and of survey of situation and relief with application of global navigation sattelite systems GLONASS and GPS, 2002.

  9. Gorshkov, V.L., Mokhnatkin, A.V., Smirnov, S.S., Petrov, S.D., Trofimov, D.A., and Shcherbakova, N.V., Study of geodynamics of boundary zone beetwen Baltic Shield and East European Platform by using GNSS observations, Vestn. S.-Peterb. Univ. Ser. 1. Mat. Mekh. Astron., 2015, vol. 2, no. 3, pp. 463–472.

    Google Scholar 

  10. Hou, J., Wu, Y., Xu, Y., Li, X., Wang, S., Wang, F., and Zhang, X., 3d data visualization system of immersive underground laboratory, Sustainable Cities Soc., 2019, vol. 46, p. 101439. https://doi.org/10.1016/j.scs.2019.101439

    Article  Google Scholar 

  11. Istomin, A.D., Kesler, A.G., Kokorev, O.N., Noskov, M.D., and Cheglokov, A.A., Specialized information support system for the management of a deep disposal site for liquid radioactive waste, Izv. Vyssh. Uchebn. Zaved. Fiz., 2021, vol. 64, no. 2-2, pp. 34–39. https://doi.org/10.17223/00213411/64/2-2/34

  12. Kaftan, V.I., Tatarinov, V.N., Manevich, A.I., Prusakov, A.N., and Kaftan, A.V., Accuracy estimation of GNSS observations at a reference basis as a means of testing the measuring equipment of local geodynamic monitoring, Geodeziya Kartografiya, 2020, vol. 81, no. 7, pp. 37–46. https://doi.org/10.22389/0016-7126-2020-961-7-37-46

    Article  Google Scholar 

  13. Kitamura, A., Nakai, K., Namekawa, T., and Watahiki, M., In-cell maintenance by manipulator arm with 3d workspace information recreated by laser rangefinder, Nucl. Eng. Des., 2011, vol. 241, no. 7, pp. 2614–2623.

    Article  Google Scholar 

  14. Kokorev, O.N., Kozlov, A.E., Noskov, M.D., and Shchipkov, A.A., The smart landfill strategy for deep disposal of liquid radioactive waste, Izv. Vyssh. Uchebn. Zaved. Fiz., 2018, vol. 61, no. 12-2, pp. 45–49.

  15. Kokorev, O.N., Adonin, N.R., Noskov, M.D., Zavedii, T.Yu., and Shchipkov, A.A., An automated system of hydrodynamic monitoring for the environmental safety of a geological repository of LRW, Izv. Vyssh. Uchebn. Zaved. Fiz., 2021, vol. 64, no. 2-2, pp. 46–51. https://doi.org/10.17223/00213411/64/2-2/46

  16. Liu, Z., Liu, Y., Zhu, H., and Cheng, S., Research on nuclear facilities decommissioning engineering support system framework, Asia-Pacific Power and Energy Engineering Conference (APPEEC), Chengdu, China, 2010, IEEE, 2010, pp. 1–4. https://doi.org/10.1109/APPEEC.2010.5448771

  17. Machin, G., Simpson, R., Sutton, G., Bond, W., Heaps, E., Hayes, M., Korniliou, S., McMillan, J., Norman, J., Sposito, A., Panicker, V., Adamska, A., Allen, A., Bernard, R., Clarke, S., Clifford, J., Gallagher, C., and Jowsey, J., Novel thermometry approaches to facilitate safe and effective monitoring of nuclear material containers, Nucl. Eng. Des., 2021, vol. 371, p. 110939. https://doi.org/10.1016/j.nucengdes.2020.110939

    Article  Google Scholar 

  18. Manevich, A.I., Kaftan, V.I., Losev, I.V., and Shevchuk, R.V., Improvement of the deformation GNSS monitoring network of the Nizhne-Kansk massif underground research laboratory site, Seism. Instrum., 2021, vol. 57, no. 2, pp. 587–599. https://doi.org/10.3103/S0747923921050042

    Article  Google Scholar 

  19. Normandeau, J., Meertens, C., and Bartel, B., Permanent station GPS/GNSS antenna monuments and mounts supported by UNAVCO. Knowledge Base UNAVCO. https://kb.unavco.org/kb/article/permanent-station-gps-gnss-antenna-monuments-and-mounts-supported-by-unavco-poster-for-unavco-science-meeting-2010-646.html. Cited July 26, 2022.

  20. NP-064-17: Federal standards and regulations in the area of usage of nuclear energy. Accounting for external excitation of natural and anthropogenic industrial origin on objects of nuclear power usage, 2018.

  21. Park, H.-S., Jang, S.-C., Kang, I.-S., Lee, D.-J., Kim, J.-G., and Lee, J.-W., A detailed design for a radioactive waste safety management system using ICT technologies, Prog. Nucl. Energy, 2022, vol. 149, p. 104251. https://doi.org/10.1016/j.pnucene.2022.104251

    Article  Google Scholar 

  22. Pravila zakladki tsentrov i reperov na punktakh geodezicheskoi i nivelirnoi setei (Regulations on Placement of Centers and Reference Points at Locations of Geodesic and Leveling Networks), Moscow: Kartgeotsentr–Geodezizdat, 1993.

  23. Pravila zakrepleniya tsentrov punktov sputnikovoi geodezicheskoi seti (Regulations on Mounting the Centers of Stations of Sattelite Geodesic Network), Moscow: TsNIIGAiK, 2001.

  24. Rasam, A.R.A., Hamid, N.A., Hamid, M.Z.A., Maarof, I., and Samad, A., 3D photorealistic modeling of university building using digital close-range photogrammetry, IEEE 4th Control and System Graduate Research Colloquium, Sham Alam, Malaysia, 2013, IEEE, 2013, pp. 147–151. https://doi.org/10.1109/ICSGRC.2013.6653293

  25. RB-019-17: Guideline on safety at usage of nuclear power. Assessment of original seismicity of the region and area of placement of an object of nuclear power usage at engineering surveys and studies, 2017.

  26. RD 07-603-03: Regulation documents of Gosgortekhnadzor of Russia. Guideline on conduction of mine-surveying works, 2003.

  27. Shevchuk, R.V., Manevich, A.I., Akmatov, D.Zh., Urmanov, D.I., and Shakirov, A.I., Modern methods, techniques, and engineering means of monitoring the movement of the Earth’s crust, Gornaya Prom-st., 2022, no. 5, pp 99–104. https://doi.org/10.30686/1609-9192-2022-5-99-104

  28. Tatarinov, V.N., Aleshin, I.M., and Tatarinova, T.A., Experience of space geodesy observations at nuclear facilities, Seism. Instrum., 2019, vol. 55, no. 6, pp. 676–687. https://doi.org/10.3103/S0747923919060094

    Article  Google Scholar 

  29. Tikhonov, A.A. and Akmatov, D.Zh., Review of aerophotography data processing programs, Gorn. Inf.-Anal. Byull., 2018, no. 12, pp. 192–198. https://doi.org/10.25018/0236-1493-2018-12-0-192-198

  30. Tikhonov, A.A. and Akmatov, D.Zh., Time to use multicopters in industry, Gorn. Inf.-Anal. Byull., 2019, no. 1, pp. 55–62. https://doi.org/10.25018/0236-1493-2019-01-0-55-62

  31. Yang, B., Ali, F., Zhou, B., Li, Sh., Yu, Y., Yang, T., Liu, X., Liang, Zh., and Zhang, K., A novel approach of efficient 3d reconstruction for real scene using unmanned aerial vehicle oblique photogrammetry with five cameras, Comput. Electr. Eng., 2022, vol. 99, p. 107804. https://doi.org/10.1016/j.compeleceng.2022.107804

    Article  Google Scholar 

Download references

Funding

The study was carried out within the state task of the Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences, approved by the Ministry of Education and Science of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. V. Perederin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perederin, F.V., Kholodkov, K.I., Tatarinov, V.N. et al. Observations of Earth Surface Deformations at the FSUE Radon Test Site. Seism. Instr. 58 (Suppl 1), S177–S186 (2022). https://doi.org/10.3103/S0747923922070167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922070167

Keywords:

Navigation