Skip to main content

Advertisement

Log in

Distributed Acoustic Sensing: A New Tool or a New Paradigm

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Distributed acoustic sensing (DAS) is a technology that uses a fiber optic cable as a linear array of virtual seismic sensors. The article allows the reader to learn a little more about DAS data, mainly from the theoretical viewpoint, and correct some existing misconceptions; it gives an overview of the development of DAS and its modifications. The objective of this work is to discuss the advantages and prospects of distributed fiber optic sensors and the possibilities of expanding the boundaries of their practical applications and to clarify the problems and limitations faced by seismologists using DAS. Ways of overcoming the existing limitations are also described. The article identifies areas which need to be developed for wider dissemination of distributed measurements; it lists some commercialized applications and applications in which experiments will soon turn into routine geophysical measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Abbott, R.E., Mellors, R., and Pitarka, A., Distributed acoustic sensing observations and modeling of the DAG series of chemical explosions, CTBT: Science and Technology, Vienna, Austria, 2019, T.23–P12.

  2. Ajo-Franklin, J.B., Dou, S., Lindsey, N.J., Monga, I., Tracy, C., Robertson, M., Tribaldos, V.R., Ulrich, C., Freifeld, B., Daley, T., and Li, X., Distributed acoustic sensing using dark fiber for near-surface characterization and broadband seismic event detection, Sci. Rep., 2019, no. 9, p. 1328. https://doi.org/10.1038/s41598-018-36675-8

  3. Alekseev, A.E., Vdovenko, V.S., Gorshkov, B.G., Potapov, V.T., and Simikin, D.E., A phase-sensitive coherence reflectometer with amplitude-phase modulation of probing pulses, Tech. Phys. Lett., 2015, vol. 41, pp. 72–75.  https://doi.org/10.1134/S1063785015010174

    Article  Google Scholar 

  4. Alekseev, A., Gorshkov, B., and Potapov, V., Fidelity of the dual-pulse phase-OTDR response to spatially distributed external perturbation, Laser Phys., 2019, vol. 29, no. 5, p. 055106.  https://doi.org/10.1088/1555-6611/ab0d15

    Article  Google Scholar 

  5. Alekseev, A.E., Gorshkov, B.G., Potapov, V.T., Taranov, M.A., and Simikin, D.E., Dual-pulse phase-OTDR response to propagating longitudinal disturbance, Laser Phys., 2020, vol. 30, no. 3, p. 035107.  https://doi.org/10.1088/1555-6611/ab70b0

    Article  Google Scholar 

  6. Alfataierge, E., Aldawood, A., Bakulin, A., Stewart, R., and Merry, H., Influence of gauge length on DAS VSP data at the Houston Research Center test well, 90th Ann. Int. Meeting, SEG 2020: Expanded Abstracts, 2020, pp. 505–509. https://doi.org/10.1190/segam2020-3419066

  7. Aung, T.L., Ma, N., Kishida, K., and Guzik, A., Advanced structural health monitoring method by integrated isogeometric analysis and distributed fiber optic sensing, Sensors, 2021, vol. 21, no. 17, p. 5794.  https://doi.org/10.3390/s21175794

    Article  Google Scholar 

  8. Awwad, E., Dorize, C., Guerrier, S., and Renaudier, J., Detection-localization-identification of vibrations over long distance SSMF with coherent ∆ϕ-OTDR, J. Lightwave Techol., 2020, vol. 38, no. 12, pp. 3089–3095.  https://doi.org/10.1109/JLT.2020.2993167

    Article  Google Scholar 

  9. Bado, M.F. and Casas, J.R., A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring, Sensors, 2021, vol. 21, no. 5, p. 1818.  https://doi.org/10.3390/s21051818

    Article  Google Scholar 

  10. Baird, A.F., Stork, A.L., Horne, S.A., Naldrett, G., Kendall, J.-M., Wookey, J., Verdon, J.P., and Clarke, A., Characteristics of microseismic data recorded by distributed acoustic sensing systems in anisotropic media, Geophysics, 2020, vol. 85, no. 4, pp. KS139–KS147. https://doi.org/10.1190/geo2019-0776.1

    Article  Google Scholar 

  11. Bakulin, A., Golikov, P., Smith, R., Erickson, K., Silvestrov, I., and Al-Ali, M., Smart DAS upholes for simultaneous land near-surface characterization and subsurface imaging, Leading Edge, 2017, vol. 36, no. 12, pp. 1001–1008.  https://doi.org/10.1190/tle36121001.1

    Article  Google Scholar 

  12. Bakulin, A., Golikov, P., Erickson, K., Silvestrov, I., Kim, Y.S., Smith, R., and Al-Ali, M., Seismic imaging of vertical array data acquired using smart DAS uphole acquisition system, SEG Technical Program Expanded Abstracts, 2018, pp. 4050–4054. https://doi.org/10.1190/segam2018-2995404.1

  13. Bakulin, A., Silvestrov, I., and Pevzner, R., Surface seismics with DAS: An emerging alternative to modern point-sensor acquisition, Leading Edge, 2020, vol. 39, no. 11, pp. 808–818. https://doi.org/10.1190/tle39110808.1

    Article  Google Scholar 

  14. Barrias, A., Casas, J.R., and Villalba, S., A review of distributed optical fiber sensors for civil engineering applications, Sensors, 2016, vol. 16, no. 5, p. 748.  https://doi.org/10.3390/s16050748

    Article  Google Scholar 

  15. Becker, M.W., Ciervo, C., Cole, M., Coleman, T., and Mondanos, M., Fracture hydromechanical response measured by fiber optic distributed acoustic sensing at millihertz frequencies, Geophys. Res. Lett., 2017, vol. 44, no. 14, pp. 7295–7302.  https://doi.org/10.1002/2017GL073931

    Article  Google Scholar 

  16. Becker, M.W., Ciervo, C., and Coleman, T., Laboratory testing of low frequency strain measured by distributed acoustic sensing, SEG Technical Program Expanded Abstracts, 2018, pp. 4963–4966.  https://doi.org/10.1190/segam2018-2997900.1

  17. Bellefleur, G., Schetselaar, E., Wade, D., White, D., Enkin, R., and Schmitt, D.R., Vertical seismic profiling using distributed acoustic sensing with scatter-enhanced fibre-optic cable at the Cu–Au New Afton porphyry deposit, British Columbia, Canada, Geophys. Prospect., 2020, vol. 68, pp. 313–333.  https://doi.org/10.1111/1365-2478.12828

    Article  Google Scholar 

  18. Binder, G. and Chakraborty, D., Detecting microseismic events in downhole distributed acoustic sensing data using convolutional neural networks, SEG Technical Program Expanded Abstracts, 2019, pp. 4864–4868.  https://doi.org/10.1190/segam2019-3214863.1

  19. Binder, G., Titov, A., Liu, Y., Simmons, J., Tura, A., Byerley, G., and Monk, D., Modeling the seismic response of individual hydraulic fracturing stages observed in a time-lapse distributed acoustic sensing vertical seismic profiling survey, Geophysics, 2020, vol. 85, no. 4, pp. T225–T235. https://doi.org/10.1190/geo2019-0819.1

    Article  Google Scholar 

  20. Booth, A.D., Christoffersen, P., Schoonman, C., Clarke, A., Hubbard, B., Law, R., Doyle, S.H., Chudley, T.R., and Chalari, A., Distributed acoustic sensing of seismic properties in a borehole drilled on a fast-flowing greenlandic outlet glacier, Geophys. Res. Lett., 2020, vol. 47, no. 13, p. e2020GL088148.  https://doi.org/10.1029/2020GL088148

  21. Borodin, I. and Segal, A., Real-time hydraulic fracture monitoring and wellbore characterization with distributed acoustic sensing of pumping noise, Leading Edge, 2020, vol. 39, no. 11, pp. 785–792.  https://doi.org/10.1190/tle39110785.1

    Article  Google Scholar 

  22. Buimistryuk, G.Ya., Informatsionno-izmeritel’naya tekhnika i tekhnologiya na osnove volokonno-opticheskikh datchikov i sistem (Information-Measurement Technics and Technology Based on Fiber-Optic Sensors and Systems), St. Petersburg: IVA, GROTs Minatoma, 2005.

  23. Butov, O.V., Zotov, A.M., and Yatseev, V.A., Use of chirped pulse for recovering the phase of coherent reflectometer, Foton-Ekspress, 2019, no. 6, pp. 46–47. https://doi.org/10.24411/2308-6920-2019-16018

  24. Chambers, K., What is DAS and what is it measuring? https://motionsignaltechnologies.com/what-is-das-and-what-is-it-measuring. Cited January 12, 2022.

  25. Chang, T., Wang, Z., Yang, Y., Zhang, Y., Zheng, Z., Cheng, L., and Cui, H.-L., Fiber optic interferometric seismometer with phase feedback control, Opt. Express, 2020, vol. 28, pp. 6102–6122.  https://doi.org/10.1364/OE.385703

    Article  Google Scholar 

  26. Chapeleau, X. and Bassil, A., A general solution to determine strain profile in the core of distributed fiber optic sensors under any arbitrary strain fields, Sensors, 2021, vol. 21, no. 16, p. 5423.  https://doi.org/10.3390/s21165423

    Article  Google Scholar 

  27. Chen, D., Liu, Q., and He, Z., 108-km distributed acoustic sensor with 220-pε/√Hz strain resolution and 5-m spatial resolution, J. Lightwave Technol., 2019, vol. 37, no. 18, pp. 4462–4468.  https://doi.org/10.1109/JLT.2019.2901276

    Article  Google Scholar 

  28. Cheng, F., Chi, B., Lindsey, N.J., Dawe, T.C., and Ajo-Franklin, J.B., Utilizing distributed acoustic sensing and ocean bottom fiber optic cables for submarine structural characterization, Sci. Rep., 2021, vol. 11, p. 5613.  https://doi.org/10.1038/s41598-021-84845-y

    Article  Google Scholar 

  29. Correa, J., Pevzner, R., Bona, A., Tertyshnikov, K., Freifeld, B., Robertson, M., and Daley, T., 3D vertical seismic profile acquired with distributed acoustic sensing on tubing installation: A case study from the CO2CRC Otway project, Interpretation, 2019, vol. 7, no. 1, pp. SA11–SA19.  https://doi.org/10.1190/INT-2018-0086.1

    Article  Google Scholar 

  30. Coscetta, A., Minardo, A., and Zeni, L., Distributed dynamic strain sensing based on Brillouin scattering in optical fibers, Sensors, 2020, vol. 20, no. 19, p. 5629.  https://doi.org/10.3390/s20195629

    Article  Google Scholar 

  31. Currenti, G., Jousset, P., Chalari, A., Zuccarello, L., Napoli, R., Reinsch, T., and Krawczyk, C., Fibre optic distributed acoustic sensing of volcanic events at mt etna, EGU General Assembly, 2020, p. EGU2020-11461.  https://doi.org/10.5194/egusphere-egu2020-11641

    Book  Google Scholar 

  32. Daley, T.M., Freifeld, B.M., Ajo-Franklin, J., Dou, S., Pevzner, R., Shulakova, V., Kashikar, S., Miller, D.E., Goetz, J., Henninges, J., and Lueth, S., Field testing of fiber-optic distributed acoustic sensing (DAS) for subsurface seismic monitoring, Leading Edge, 2013, vol. 32, no. 6, pp. 699–706.  https://doi.org/10.1190/tle32060699.1

    Article  Google Scholar 

  33. Daley, T.M., Miller, D.E., Dodds, K., Cook, P., and Freifeld, B.M., Field testing of modular borehole monitoring with simultaneous distributed acoustic sensing and geophone vertical seismic profiles at Citronelle, Alabama, Geophys. Prospect., 2016, vol. 64, no. 5, pp. 1318–1334.  https://doi.org/10.1111/1365-2478.12324

    Article  Google Scholar 

  34. Dashkov, M.V. and Smirnov, A.S., Polarization reflectometry of optical fibers: Physical foundations, methods and applications (review article), Prikl. Fotonika, 2018, vol. 5, nos. 1–2, pp. 62–91.

    Google Scholar 

  35. Dean, T., Cuny, T., and Hartog, A.H., The effect of gauge length on axially incident P-waves measured using fibre optic distributed vibration sensing, Geophys. Prospect., 2017, vol. 65, no. 1, pp. 184–193.  https://doi.org/10.1111/1365-2478.12419

    Article  Google Scholar 

  36. Denisov, A., Soto, M., and Thévenaz, L., Going beyond 1000000 resolved points in a Brillouin distributed fiber sensor: theoretical analysis and experimental demonstration, Light Sci. Appl., 2016, vol. 5, p. e16074.  https://doi.org/10.1038/lsa.2016.74

    Article  Google Scholar 

  37. Distributed Acoustic Sensing in Geophysics: Methods and Applications, Li, M., Karrenbach, J., and Ajo-Franklin, J., Eds., John Wiley & Sons, 2021.

  38. Distributed fiber-optic sensors. Special systems. Photonics. https://sphotonics.ru/catalog/fiber-sensing/. Cited January 10, 2022.

  39. Distributed fiber sensors. Special systems. Photonics. https://sphotonics.ru/solutions/raspredelennye-volokonnye-datchiki/. Cited December 21, 2021.

  40. Dong, B., Tribaldos, V.R., Xing, X., Byna, S., Ajo-Franklin, J.B., and Wu, K., DASSA: Parallel DAS data storage and analysis for subsurface event detection, IEEE Int. Parallel and Processing Symp. (IPDPS), 2020, pp. 254–263.  https://doi.org/10.1109/IPDPS47924.2020.00035

  41. Dou, S., Lindsey, N., Wagner, A.M., Daley, T.M., Freifeld, B., Robertson, M., Peterson, J., Ulrich, C., Martin, E.R., and Ajo-Franklin, J.B., Distributed acoustic sensing for seismic monitoring of the near surface: A traffic-noise interferometry case study, Sci. Rep., 2017, vol. 7, no. 1, p. 11620.  https://doi.org/10.1038/s41598-017-11986-4

    Article  Google Scholar 

  42. Fang, G., Li, Y.E., Zhao, Y., and Martin, E.R., Urban near-surface seismic monitoring using distributed acoustic sensing, Geophys. Rev. Lett., 2020, vol. 47, no. 6, p. e2019GL086115.  https://doi.org/10.1029/2019GL086115

  43. Faucher, F., de Hoop, M.V., and Scherzer, O., Reciprocity-gap misfit functional for distributed acoustic sensing, combining data from passive and active sources, Geophysics, 2021, vol. 86, no. 2, pp. R211–R220.  https://doi.org/10.1190/geo2020-0305.1

    Article  Google Scholar 

  44. Fedorov, A.K., Anufriev, M.N., Zhirnov, A.A., Stepanov, K.V., Nesterov, E.T., Namiot, D.E., Karasik, V., and Pnev, A., Note: gaussian mixture model for event recognition in optical time-domain reflectometry based sensing systems, Rev. Sci. Instrum., 2016, vol. 87, no. 3, p. 036017.  https://doi.org/10.1063/1.4944417

    Article  Google Scholar 

  45. Fenta, M.C., Potter, D.K., and Szanyi, J., Fibre optic methods of prospecting: a comprehensive and modern branch of geophysics, Surv. Geophys., 2021, vol. 42, pp. 551–584.  https://doi.org/10.1007/s10712-021-09634-8

    Article  Google Scholar 

  46. Fernandez, I., Berrocal, C.G., and Rempling, R., Long-term performance of distributed optical fiber sensors embedded in reinforced concrete beams under sustained deflection and cyclic loading, Sensors, 2021, vol. 21, no. 19, p. 6338.  https://doi.org/10.3390/s21196338

    Article  Google Scholar 

  47. Fernandez-Ruiz, M.R., Martins, H.F., Pastor-Graells, J., Martin-Lopez, S., and Gonzalez-Herraez, M., Phase-sensitive OTDR probe pulse shapes robust against modulation-instability fading, Opt. Lett., 2016, vol. 41, no. 24, pp. 5756–5759.  https://doi.org/10.1364/OL.41.005756

    Article  Google Scholar 

  48. Fernandez-Ruiz, M.R., Soto, M.A., Williams, E.F., Martin-Lopez, S., Zhan, Z., Gonzalez-Herraez, M., and Martins, H., Distributed acoustic sensing for seismic activity monitoring, APL Photonics, 2020, vol. 5, p. 030901.  https://doi.org/10.1063/1.5139602

    Article  Google Scholar 

  49. Fiber-optic sensors of distribution of strain and temperature sensors (DSTS). https://www.ozoptics.com/ALLNEW_PDF/DTS0115RU.pdf. Cited January 10, 2022.

  50. Foster, S., Thermal noise limits for optical time domain reflectometry, J. Lightwave Technol., 2021, vol. 39, no. 8, pp. 2514–2521.  https://doi.org/10.1109/JLT.2021.3052192

    Article  Google Scholar 

  51. Fu, Y., Wang, Z., Zhu, R., Xue, N., Jiang, J., Lu, C., Zhang, B., Yang, L., Atubga, D., and Rao, Y., Ultra-long-distance hybrid BOTDA/Ф-OTDR, Sensors, 2018, vol. 18, no. 4, p. 976.  https://doi.org/10.3390/s18040976

    Article  Google Scholar 

  52. Gabai, H. and Eyal, A., On the sensitivity of distributed acoustic sensing, Opt. Lett., 2016, vol. 41, no. 24, pp. 5648–5651. https://doi.org/10.1364/OL.41.005648

    Article  Google Scholar 

  53. Gabai, H., Botsev, Y., Hahami, M., and Eyal, A., Optical frequency domain reflectometry at maximum update rate using i/q detection, Opt. Lett., 2015, vol. 40, no. 8, pp. 1725–1728.  https://doi.org/10.1364/OL.40.001725

    Article  Google Scholar 

  54. Galkovski, T., Lemcherreq, Y., Mata-Falcon, J., and Kaufmann, W., Fundamental studies on the use of distributed fibre optical sensing on concrete and reinforcing bars, Sensors, 2021, vol. 21, no. 22, p. 7643.  https://doi.org/10.3390/s21227643

    Article  Google Scholar 

  55. Gorshkov, B.G. and Taranov, M.A., Simultaneous optical fibre strain and temperature measurements in a hybrid distributed sensor based on Rayleigh and Raman scattering, Quantum Electron., 2018, vol. 48, no. 2, pp. 184–187.  https://doi.org/10.1070/QEL16541

    Article  Google Scholar 

  56. Gorshkov, B.G., Gorshkov, G.B., and Taranov, M.A., Simultaneous temperature and strain sensing using distributed raman optical time-domain reflectometry, Laser Phys. Lett., 2017, vol. 14, no. 1, p. 015103.  https://doi.org/10.1088/1612-202X/14/1/015103

    Article  Google Scholar 

  57. Gutscher, M.-A., Royer, J.-Y., Graindorge, D., Murphy, S., Klingelhoefer, F., Aiken, C., Cattaneo, A., Barreca, G., Quetel, L., Riccobene, G., Aurnia, S., Petersen, F., Lange, D., Urlaub, M., Krastel, S., Gross, F., Kopp, H., Moretti, M., Beranzoli, L., Lo Bue, N., and the FOCUS team, The FOCUS experiment 2020 (fiber optic cable use for seafloor studies of earthquake hazard and deformation), EGU General Assembly, 2020, p. EGU2020-5369.  https://doi.org/10.5194/egusphere-egu2020-5369

  58. Han, B., Guan, H., Yao, J., Rao, Y.-J., Ran, Z., Gong, Y., Li, Q., Li, M., Zhang, R., An, S., Yu, G., and Wang, X., Distributed acoustic sensing with sensitivity-enhanced optical cable, IEEE Sensors J., 2021, vol. 21, no. 4, pp. 4644–4651.  https://doi.org/10.1109/JSEN.2020.3035002

    Article  Google Scholar 

  59. Hartog, A.H., Distributed sensors in the oil and gas industry, Optical Fibre Sensors: Fundamentals for Development of Optimized Devices, Villar, I. and Matias, I.R., Eds., pp. 151–191.  https://doi.org/10.1002/9781119534730.ch6

  60. He, H., Yan, L., Qian, H., Zhang, X., Luo, B., and Pan, W., Enhanced range of the dynamic strain measurement in phase-sensitive OTDR with tunable sensitivity, Opt. Express, 2020a, vol. 28, no. 1, pp. 226–237.  https://doi.org/10.1364/OE.378257

    Article  Google Scholar 

  61. He, X., Xu, X., Zhang, M., Xie, S., Liu, F., Gu, L., Zhang, Y., Yang, Y., and Lu, H., On the phase fading effect in the dual-pulse heterodyne demodulated distributed acoustic sensing system, Opt. Express, 2020b, vol. 28, no. 22, pp. 33433–33447.  https://doi.org/10.1364/OE.403263

    Article  Google Scholar 

  62. Henninges, J., Martuganova, E., Stiller, M., Norden, B., and Krawczyk, C. Vertical seismic profiling with distributed acoustic sensing images the Rotliegend geothermal reservoir in the North German Basin down to 4.2 km depth, Solid Earth, 2020.  https://doi.org/10.5194/se-2020-169

  63. Hong, C.-Y., Zhang, Y.-F., Zhang, M.-X., Ming, L., Leung, G., and Liu, L.-Q., Application of FBG sensors for geotechnical health monitoring, a review of sensor design, implementation methods and packaging techniques, Sens. Actuators, A, 2016, vol. 244, pp. 184–197.  https://doi.org/10.1016/j.sna.2016.04.033

    Article  Google Scholar 

  64. Hornman, J.C., Field trial of seismic recording using distributed acoustic sensing with broadside sensitive fibre-optic cables, Geophys. Prospect., 2017, vol. 65, pp. 35–46.  https://doi.org/10.1111/1365-2478.12358

    Article  Google Scholar 

  65. Howe, B.M., Arbic, B.K., Aucan, J., Barnes, C.R., Bayliff, N., Becker, N., Butler, R., Doyle, L., Elipot, S., Johnson, G.C., Landerer, F., Lentz, S., Luther, D.S., Muller, M., Mariano, J., Panayotou, K., Rowe, C., Ota, H., Song, Y.T., Thomas, M., Thomas, P.N., Thompson, P., Tilmann, F., Weber, T., and Weinstein, S., Smart cables for observing the global ocean: Science and implementation, Front. Mar. Sci., 2019, vol. 6, p. 424.  https://doi.org/10.3389/fmars.2019.00424

    Article  Google Scholar 

  66. Hudson, T.S., Baird, A.F., Kendall, J.M., Kufner, S.K., Brisbourne, A.M., Smith, A.M., Butcher, A., Chalari, A., and Clarke, A., Distributed acoustic sensing (DAS) for natural microseismicity studies: A case study from Antarctica, J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 7, p. e2020JB021493.  https://doi.org/10.1029/2020JB021493

  67. Huff, O., Lellouch, A., Luo, B., Jin, G., and Biondi, B., Validating the origin of microseismic events in target reservoir using guided waves recorded by DAS, Leading Edge, 2020, vol. 39, no. 11, pp. 776–784.  https://doi.org/10.1190/tle39110776.1

    Article  Google Scholar 

  68. Hull, R., Meek, R., Bello, H., Woller, K., and Wagner, J., Monitoring horizontal well hydraulic stimulations and geomechanical deformation processes in the unconventional shales of the midland basin using fiber-based time-lapse VSPs, microseismic, and strain data, Leading Edge, 2019, vol. 38, no. 2, pp. 130–137.  https://doi.org/10.1190/tle38020130.1

    Article  Google Scholar 

  69. Huot, F. and Biondi, B., Machine learning algorithms for automated seismic ambient noise processing applied to das acquisition, SEG Technical Program Expanded Abstracts, 2018, pp. 5501–5505.  https://doi.org/10.1190/segam2018-w20-03.1

  70. Ichikawa, M., Uchida, S., Katou, M., Kurosawa, I., Tamura, K., Kato, A., Ito, Y., De Groot, M., and Hara, S., Case study of hydraulic fracture monitoring using multiwell integrated analysis based on low-frequency DAS data, Leading Edge, 2020, vol. 39, no. 11, pp. 794–800.  https://doi.org/10.1190/tle39110794.1

    Article  Google Scholar 

  71. Ide, S., Araki, E., and Matsumoto, H., Very broadband strain-rate measurements along a submarine fiber-optic cable off Cape Muroto, Nankai subduction zone, Japan, Earth, Planets Space, 2021, vol. 73, p. 63.  https://doi.org/10.1186/s40623-021-01385-5

    Article  Google Scholar 

  72. Iida, D., Honda, N., and Oshida, H., Advances in distributed vibration sensing for optical communication fiber state visualization, Opt. Fiber Tech., 2020, vol. 57, p. 102263.  https://doi.org/10.1016/j.yofte.2020.102263

    Article  Google Scholar 

  73. Ilinskiy, D.A., Alekseev, A.E., Ganzha, O.Yu., Semikin, D.E., and Ojha, M., Use of fiber optic communication lines with a phase-sensitive reflectometer for recording seismic signals, Seism. Instrum., 2021, vol. 57, pp. 231–248.  https://doi.org/10.3103/S0747923921030051

    Article  Google Scholar 

  74. Ivanov, V., Longoni, L., Ferrario, M., Brunero, M., Arosio, D., and Papini, M., Applicability of an interferometric optical fibre sensor for shallow landslide monitoring–Experimental tests, Eng. Geol., 2021, vol. 288, p. 106128.  https://doi.org/10.1016/j.enggeo.2021.106128

    Article  Google Scholar 

  75. Jestin, C., Hibert, C., Calbris, G., and Lanticq, V., Integration of machine learning on distributed acoustic sensing surveys, EGU General Assembly, 2020, pp. EGU2020–7495. https://doi.org/10.5194/egusphere-egu2020-7495

    Book  Google Scholar 

  76. Jia, H., Liang, S., Lou, S., and Sheng, X., A k-nearest neighbor algorithm-based near category support vector machine method for event identification of φ-OTDR, IEEE Sens. J., 2019, vol. 19, no. 10, pp. 3683–3689.  https://doi.org/10.1109/JSEN.2019.2891750

    Article  Google Scholar 

  77. Jousset, P., Reinsch, T., Ryberg, T., Blanck, H., Clarke, A., Aghayev, R., Hersir, G.P., Henninge, J., Weber, M., and Krawczyk, C.M., Dynamic strain determination using fibre-optic cables allows imaging of seismological and structural features, Nat. Commun., 2018, vol. 9, no. 1, p. 2509.  https://doi.org/10.1038/s41467-018-04860-y

    Article  Google Scholar 

  78. Kapa, T., Schreier, A., and Krebber, K., A 100-km BOFDA assisted by first-order bi-directional Raman amplification, Sensors, 2019, vol. 19, no. 7, p. 1527.  https://doi.org/10.3390/s19071527

    Article  Google Scholar 

  79. Keul, P.R., Mastin, E., Blanco, J., Maguerez, M., Bostick, T., and Knudsen, S., Using a fiber-optic seismic array for well monitoring, Leading Edge, 2005, vol. 24, no. 1, pp. 68–70.  https://doi.org/10.1190/1.1859704

    Article  Google Scholar 

  80. Kishida, K., Guzik, A., Nishiguchi, K., Li, C.-H., Azuma, D., Liu, Q., and He, Z., Development of real-time time gated digital (TGD) OFDR method and its performance verification, Sensors, 2021, vol. 21, no. 14, p. 4865.  https://doi.org/10.3390/s21144865

    Article  Google Scholar 

  81. Kislov, K.V. and Gravirov, V.V., Some remarks on the seismometric experiments taking into account the thickness of the frozen layer soil, Problems of Geocosmos-2018, Yanovskaya, T., Kosterov, A., Bobrov, N., Divin, A., Saraev, A., and Zolotova, N., Eds., Springer Proceedings in Earth and Environmental Sciences, Cham: Springer, 2018, pp. 263–269.  https://doi.org/10.1007/978-3-030-21788-4_22

  82. Kislov, K.V. and Gravirov, V.V., Rotational seismology: Review of achievements and outlooks, Seism. Instrum., 2021, vol. 57, pp. 187–202.  https://doi.org/10.3103/S0747923921020262

    Article  Google Scholar 

  83. Klaasen, S., Paitz, P., Lindner, N., Dettmer, J., and Fichtner, A., Distributed acoustic sensing in volcano-glacial environments–Mount Meager, British Columbia, J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 11, p. e2021JB022358.  https://doi.org/10.1029/2021JB022358

  84. Klaasen, S., Thrastarson, S., Fichtner, A., Çubuk-Sabuncu, Y., and Jónsdóttir, K., Sensing Iceland’s most active volcano with a “buried hair”, EOS, 2022, p. 103. https://doi.org/10.1029/2022EO220007

  85. Kobayashi, Y., Uematsu, Y., Mochiji, S., and Xue, Z., A field experiment of walkaway distributed acoustic sensing vertical seismic profile in a deep and deviated onshore well in Japan using a fibre optic cable deployed inside coiled tubing, Geophys. Prospect., 2020, vol. 68, pp. 501–520.  https://doi.org/10.1111/1365-2478.12863

    Article  Google Scholar 

  86. Krebber, K., Smart technical textiles based on fiber optic sensors, Current Developments in Optical Fiber Technology, Harun, S.W. and Arof, H., Eds., London: IntechOpen, 2013. https://doi.org/10.5772/54244

    Book  Google Scholar 

  87. Kuvshinov, B., Interaction of helically wound fibre-optic cables with plane seismic waves, Geophys. Prospect., 2016, vol. 64, no. 3, pp. 671–688.  https://doi.org/10.1111/1365-2478.12303

    Article  Google Scholar 

  88. Kye, M., Lee, S.-M., Choi, K.-M., Lee, Y., and Park, K.-Y., A surveillance system of fiber-optic cables with multi-channel DAS and CNN, IEEE Photonics Technol. Lett., 2021, vol. 33, no. 15, pp. 753–756.  https://doi.org/10.1109/LPT.2021.3091145

    Article  Google Scholar 

  89. Lellouch, A. and Biondi, B.L., Seismic applications of downhole das, Sensors, 2021, vol. 21, no. 9, p. 2897.  https://doi.org/10.3390/s21092897

    Article  Google Scholar 

  90. Lellouch, A., Meadows, M.A., Nemeth, T., and Biondi, B., Fracture properties estimation using distributed acoustic sensing recording of guided waves in unconventional reservoirs, Geophysics, 2020, vol. 85, no. 5, pp. M85–M95. https://doi.org/10.1190/geo2019-0793.1

    Article  Google Scholar 

  91. Lellouch, A., Biondi, E., Biondi, B.L., Luo, B., Jin, G., and Meadows, M.A., Properties of a deep seismic waveguide measured with an optical fiber, Phys. Rev. Res., 2021a, vol. 3, p. 013164.  https://doi.org/10.1103/PhysRevResearch.3.013164

    Article  Google Scholar 

  92. Lellouch, A., Schultz, R., Lindsey, N.J., Biondi, B.L., and Ellsworth, W.L., Low-magnitude seismicity with a downhole distributed acoustic sensing array - examples from the forge geothermal experiment, J. Geophys. Res.: Solid Earth, 2021b, vol. 126, no. 1, p. e2020JB020462.  https://doi.org/10.1029/2020JB020462

  93. Li, Z. and Zhan, Z., Pushing the limit of earthquake detection with distributed acoustic sensing and template matching: a case study at the brady geothermal field, Geophys. J. Int., 2018, vol. 215, no. 3, pp. 1583–1593.  https://doi.org/10.1093/gji/ggy359

    Article  Google Scholar 

  94. Li, Z., Shen, Z., Yang, Y., Williams, E., Wang, X., and Zhan, Z., Rapid response to the 2019 Ridgecrest earthquake with distributed acoustic sensing, AGU Adv., 2021, vol. 2, no. 2, p. e2021AV000395.  https://doi.org/10.1029/2021AV000395

  95. Liang, J., Wang, Z., Lu, B., Wang, X., Li, L., Ye, Q., Qu, R., and Cai, H., Distributed acoustic sensing for 2D and 3D acoustic source localization, Opt. Lett., 2019, vol. 44, pp. 1690–1693.  https://doi.org/10.1364/OL.44.001690

    Article  Google Scholar 

  96. Lindsey, N.J. and Martin, E.R., Fiber-optic seismology, Ann. Rev. Earth Planet. Sci., 2021, vol. 49, no. 1, pp. 309–336.  https://doi.org/10.1146/annurev-earth-072420-065213

    Article  Google Scholar 

  97. Lindsey, N.J., Martin, E.R., Dreger, D.S., Freifeld, B., Cole, S., James, S.R., Biondi, B.L., and Ajo-Franklin, J.B., Fiber-optic network observations of earthquake wavefields, Geophys. Rev. Lett., 2017, vol. 44, no. 23, pp. 11792–11799.  https://doi.org/10.1002/2017GL075722

    Article  Google Scholar 

  98. Lindsey, N.J., Rademacher, H., and Ajo-Franklin, J.B., On the broadband instrument response of fiber-optic das arrays, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 2, p. e2019JB018145.  https://doi.org/10.1029/2019JB018145

  99. Liokumovich, L.B., Ushakov, N.A., Kotov, O.I., Bisyarin, M.A., and Hartog, A.H., Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions, J. Lightwave Technol., 2015, vol. 33, no. 17, pp. 3660–3671.  https://doi.org/10.1109/JLT.2015.2449085

    Article  Google Scholar 

  100. Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y.M., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C., On the detection capabilities of underwater distributed acoustic sensing, J. Geophys. Res.: Solid Earth, 2020, vol. 126, no. 3, p. e2020JB020925.  https://doi.org/10.1029/2020JB020925

  101. Lior, I., Sladen, A., Mercerat, D., Ampuero, J.-P., Rivet, D., and Sambolian, S., Strain to ground motion conversion of distributed acoustic sensing data for earthquake magnitude and stress drop determination, Solid Earth, 2021a, vol. 12, pp. 1421–1442.  https://doi.org/10.5194/se-12-1421-2021

    Article  Google Scholar 

  102. Lior, I., Sladen, A., Rivet, D., Ampuero, J.-P., Hello, Y., Becerril, C., Martins, H.F., Lamare, P., Jestin, C., Tsagkli, S., and Markou, C., On the detection capabilities of underwater distributed acoustic sensing, J. Geophys. Res.: Solid Earth, 2021b, vol. 126, no. 3, p. e2020JB020925.  https://doi.org/10.1029/2020JB020925

  103. Liu, S.P., Shi, B., Gu, K., Zhang, C.-C., He, J.-H., Wu, J.-H., and Wei, G.-Q., Fiber-optic wireless sensor network using ultra-weak fiber Bragg gratings for vertical subsurface deformation monitoring, Nat. Hazards, 2021, vol. 109, pp. 2557–2573.  https://doi.org/10.1007/s11069-021-04932-1

    Article  Google Scholar 

  104. Liu, Y., Jin, G., Wu, K., and Moridis, G., Hydraulic-fracture-width inversion using low-frequency distributed-acoustic-sensing strain data–Part I: Algorithm and sensitivity analysis, SPE J., 2021a, vol. 26, no. 01, pp. 359–371.  https://doi.org/10.2118/204225-PA

    Article  Google Scholar 

  105. Liu, Y., Wu, K., Jin, G., Moridis, G., Kerr, E., Scofield, R., and Johnson, A., Fracture-hit detection using LF-DAS signals measured during multifracture propagation in unconventional reservoirs, SPE Reservoir Eval. Eng., 2021b, vol. 24, no. 03, pp. 523–535.  https://doi.org/10.2118/204457-PA

    Article  Google Scholar 

  106. Liu, Y., Yang, J., Wu, B., Lu, B., Shuai, L., Wang, Z., Ye, L., Ying, K., Ye, Q., Qu, R., and Cai, H., High SNR Φ-OTDR with multi-transverse modes heterodyne matched-filtering technology, Sensors, 2021c, vol. 21, no. 22, p. 7460.https://doi.org/10.3390/s21227460

    Article  Google Scholar 

  107. Lopez-Mercado, C.A., Korobko, D.A., Zolotovskii, I.O., and Fotiadi, A.A., Application of dual-frequency self-injection locked DFB laser for Brillouin optical time domain analysis, Sensors, 2021, vol. 21, no. 20, p. 6859.  https://doi.org/10.3390/s21206859

    Article  Google Scholar 

  108. Lu, P., Lalam, N., Badar, M., Liu, B., Chorpening, B.T., Buric, M.P., and Ohodnicki, P.R., Distributed optical fiber sensing: review and perspective, Appl. Phys. Rev., 2019, vol. 6, no. 4, p. 041302.  https://doi.org/10.1063/1.5113955

    Article  Google Scholar 

  109. Lund, B., Stork, A., Roth, M., David, A., Clarke, A., Nygren, C., and Johansson, S., Comparing high-sensitivity geophones to fiber-optic DAS technologies in a hard-rock VSP survey, EGU General Assembly, 2020, p. EGU2020-18525.  https://doi.org/10.5194/egusphere-egu2020-18525

    Book  Google Scholar 

  110. Luo, B., Trainor-Guitton, W., Bozdağ, E., LaFlame, L., Cole, S., and Karrenbach, M., Horizontally orthogonal distributed acoustic sensing array for earthquake- and ambient-noise-based multichannel analysis of surface waves, Geophys. J. Int., 2020, vol. 222, no. 3, pp. 2147–2161.  https://doi.org/10.1093/gji/ggaa293

    Article  Google Scholar 

  111. Luo, B., Jin, G., and Stanek, F., Near-field strain in distributed acoustic sensing-based microseismic observation, Geophysics, 2021, vol. 86, no. 5, pp. 49–60.  https://doi.org/10.1190/geo2021-0031.1

    Article  Google Scholar 

  112. Lv, H., Zeng, X., Bao, F., Xie, J., Lin, R., Song, Z., and Zhang, G., ADE-Net: a deep neural network for das earthquake detection trained with a limited number of positive samples, IEEE Trans. Geosci. Remote Sens., 2022, vol. 60, p. 5912111.  https://doi.org/10.1109/TGRS.2022.3143120

    Article  Google Scholar 

  113. Marra, G., Clivati, C., Luckett, R., Tampellini, A., Kronjager, J., Wright, L., Mura, A., Levi, F., Robinson, S., Xuereb, A., Baptie, B., and Calonico, D., Ultrastable laser interferometry for earthquake detection with terrestrial and submarine cables, Science, 2018, vol. 361, no. 6401, pp. 486–490.  https://doi.org/10.1126/science.aat4458

    Article  Google Scholar 

  114. Martins, H.F., Shi, K., Thomsen, B.C., Martin-Lopez, S., Gonzalez-Herraez, M., and Savory, S.J., Real time dynamic strain monitoring of optical links using the back reflection of live PSK data, Opt. Express, 2016, vol. 24, pp. 22303–22318.  https://doi.org/10.1364/OE.24.022303

    Article  Google Scholar 

  115. Masoudi, A. and Newson, T.P., Contributed review: distributed optical fibre dynamic strain sensing, Rev. Sci. Instrum., 2016, vol. 87, p. 011501.  https://doi.org/10.1063/1.4939482

    Article  Google Scholar 

  116. Mateeva, A., Lopez, J., Chalenski, D., Tatanova, M., Zwartjes, P., Yang, Z., Bakku, S., de Vos, K., and Potters, H., 4D DAS VSP as a tool for frequent seismic monitoring in deep water, Leading Edge, 2017, vol. 36, pp. 995–1000.  https://doi.org/10.1190/tle36120995.1

    Article  Google Scholar 

  117. Matias, L., Omar, Y., Carrilho, F., Sa, V., Omira, R., Corela, C., Perdigao, R.A.P., and Loureiro, A., The contribution of the CAM fibre optic submarine cable telecom ring to the early warning of tsunami and earthquakes, EGU General Assembly, 2020, p. EGU2020-13988. https://doi.org/10.5194/egusphere-egu2020-13988

    Book  Google Scholar 

  118. Matsumoto, H., Araki, E., Kimura, T., Fujie, G., Shiraishi, K., Tonegawa, T., Obana, K., Arai, R., Kaiho, Y., Nakamura, Y., Yokobiki, T., Kodaira, S., Takahashi, N., Ellwood, R., Yartsev, V., and Karrenbach, M., Detection of hydroacoustic signals on a fiber-optic submarine cable, Sci. Rep., 2021, vol. 11, p. 2797.  https://doi.org/10.1038/s41598-021-82093-8

    Article  Google Scholar 

  119. Meng, Z., Chen, W., Wang, J., Hu, X., Chen, M., and Zhang, Y., Recent progress in fiber-optic hydrophones, Photonic Sens., 2021, vol. 11, pp. 109–122.  https://doi.org/10.1007/s13320-021-0618-5

    Article  Google Scholar 

  120. Min, R., Liu, Z., Pereira, L., Yang, C., Sui, Q., and Marques, C., Optical fiber sensing for marine environment and marine structural health monitoring: a review, Opt. Laser Technol., 2021, vol. 140, p. 107082.  https://doi.org/10.1016/j.optlastec.2021.107082

    Article  Google Scholar 

  121. Minardo, A., Bernini, R., Ruiz-Lombera, R., Mirapeix, J., Lopez-Higuera, J.M., and Zeni, L., Proposal of Brillouin optical frequency-domain reflectometry (BOFDR), Opt. Express, 2016, vol. 24, pp. 29994–30001.  https://doi.org/10.1364/OE.24.029994

    Article  Google Scholar 

  122. Minardo, A., Zeni, L., Coscetta, A., Catalano, E., Zeni, G., Damiano, E., De Cristofaro, M., and Oliva-res, L., Distributed optical fiber sensor applications in geotechnical monitoring, Sensors, 2021, vol. 21, no. 22, p. 7514.https://doi.org/10.3390/s21227514

    Article  Google Scholar 

  123. Mizuno, Y., Lee, H., and Nakamura, K., Recent advances in Brillouin optical correlation-domain reflectometry, App-l. Sci., 2018, vol. 8, no. 10, p. 1845.  https://doi.org/10.3390/app8101845

    Article  Google Scholar 

  124. Motil, A., Bergman, A., and Tur, M., State of the art of Brillouin fiber-optic distributed sensing, Opt. Laser Technol., 2016, vol. 78, pp. 81–103.  https://doi.org/10.1016/j.optlastec.2015.09.013

    Article  Google Scholar 

  125. Muanenda, Y., Recent advances in distributed acoustic sensing based on phase-sensitive optical time domain reflectometry, J. Sens., 2018, vol. 2018, p. 3897873.  https://doi.org/10.1155/2018/3897873

    Article  Google Scholar 

  126. Naldrett, G., Parker, T., Shatalin, S., and Mondanos, M., High-resolution carina distributed acoustic fibre-optic sensor for permanent reservoir monitoring and extending the reach into subsea fields, First Break, 2020, vol. 38, pp. 71–76. https://doi.org/10.3997/1365-2397.fb2020012

    Article  Google Scholar 

  127. Nayak, A., Ajo-Franklin, J., and The Imperial Valley Dark Fiber Team, Distributed acoustic sensing using dark fiber for array detection of regional earthquakes, Seismol. Res. Lett., 2021a, vol. 92, no. 4, pp. 2441–2452.  https://doi.org/10.1785/0220200416

    Article  Google Scholar 

  128. Nayak, A. and Ajo-Franklin, J., The imperial valley dark fiber team. measurement of surface-wave phase-velocity dispersion on mixed inertial seismometer–Distributed acoustic sensing seismic noise cross-correlations, Bull. Seismol. Soc. Am., 2021b, vol. 111, no. 6, pp. 3432–3450.  https://doi.org/10.1785/0120210028

    Article  Google Scholar 

  129. Ning, I.L.C. and Sava, P., High-resolution multi-component distributed acoustic sensing, Geophys. Prospect., 2018a, vol. 66, pp. 1111–1122.  https://doi.org/10.1111/1365-2478.12634

    Article  Google Scholar 

  130. Ning, I.L.C. and Sava, P., Multicomponent distributed acoustic sensing: concept and theory, Geophysics, 2018b, vol. 83, no. 2, pp. P1–P8.  https://doi.org/10.1190/geo2017-0327.1

    Article  Google Scholar 

  131. Paitz, P., Edme, P., Gräff, D., Walter, F., Doetsch, J., Chalari, A., Schmelzbach, C., and Fichtner, A., Empirical investigations of the instrument response for distributed acoustic sensing (DAS) across 17 octaves, Bull. Seismol. Soc. Am., 2020, vol. 111, no. 1, pp. 1–10.  https://doi.org/10.1785/0120200185

    Article  Google Scholar 

  132. Papp, B., Donno, D., Martin, J.E., and Hartog, A.H., A study of the geophysical response of distributed fibre optic acoustic sensors through laboratory-scale experiments, Geophys. Prospect., 2017, vol. 65, pp. 1186–1204.  https://doi.org/10.1111/1365-2478.12471

    Article  Google Scholar 

  133. Parker, L.M., Thurber, C.H., Zeng, X., Li, P., Lord, N.E., Fratta, D., Wang, H.F., Robertson, M.C., Thomas, A.M., Karplus, M.S., Nayak, A., and Feigl, K.L., Active-source seismic tomography at the Brady Geothermal Field, Nevada, with dense nodal and fiber-optic seismic arrays, Seismol. Res. Lett., 2018, vol. 89, no. 5, pp. 1629–1640.  https://doi.org/10.1785/0220180085

    Article  Google Scholar 

  134. Pastor-Graells, J., Martins, H.F., Garcia-Ruiz, A., Martin-Lopez, S., and Gonzalez-Herraez, M., Single-shot distributed temperature and strain tracking using direct detection phase-sensitive OTDR with chirped pulses, Opt. Express, 2016, vol. 24, pp. 13121–13133.  https://doi.org/10.1364/OE.24.013121

    Article  Google Scholar 

  135. Peng, F. and Cao, X., A hybrid Φ/B-OTDR for simultaneous vibration and strain measurement, Photonic Sens., 2016, vol. 6, no. 2, pp. 121–126.  https://doi.org/10.1007/s13320-016-0289-9

    Article  Google Scholar 

  136. Pevzner, R., Gurevich, B., Pirogova, A., Tertyshnikov, K., and Glubokovskikh, S., Repeat well logging using earthquake amplitudes measured by distributed acoustic sensors, Leading Edge, 2020, vol. 39, no. 7, pp. 513–517. https://doi.org/10.1190/tle39070513.1

    Article  Google Scholar 

  137. Popik, S., Pevzner, R., Bona, A., Tertyshnikov, K., Glubokovskikh, S., and Gurevich, B., Estimation of P-wave anisotropy parameters from 3D vertical seismic profile with distributed acoustic sensors and geophones for seismic imaging in the CO2CRC Otway Project, Geophys. Prospect., 2021, vol. 69, pp. 842–855.  https://doi.org/10.1111/1365-2478.13080

    Article  Google Scholar 

  138. Rajan, G., Optical Fiber Sensors: Advanced Techniques and Applications, Boca Raton, Fla.: CRC Press, 2017.

    Book  Google Scholar 

  139. Ramakrishnan, M., Rajan, G., Semenova, Y., Boczkowska, A., Domański, A., Wolinski, T., and Farrell, G., Measurement of thermal elongation induced strain of a composite material using a polarization maintaining photonic crystal fiber sensor, Sens. Actuators, A, 2013, vol. 190, pp. 44–51.  https://doi.org/10.1016/j.sna.2012.11.010

    Article  Google Scholar 

  140. Rao, Y., Wang, Z., Wu, H., Ran, Z., and Han, B., Recent advances in phase-sensitive optical time domain reflectometry (Ф-OTDR), Photonic Sens., 2021, vol. 11, pp. 1–30.  https://doi.org/10.1007/s13320-021-0619-4

    Article  Google Scholar 

  141. Reinsch, T., Thurley, T., and Jousset, P., On the mechanical coupling of a fiber optic cable used for distributed acoustic/vibration sensing applications–A theoretical consideration, Meas. Sci. Technol., 2017, vol. 28, p. 127003. https://doi.org/10.1088/1361-6501/aa8ba4

    Article  Google Scholar 

  142. Reinsch, T., Jousset, P., and Krawczyk, C.M., Fiber optic distributed strain sensing for seismic applications, Encyclopedia of Solid Earth Geophysics, Gupta, H.K., Ed., Encyclopedia of Earth Sciences Series, Cham: Springer, 2020, pp. 1–5.  https://doi.org/10.1007/978-3-030-10475-7_284-1

    Book  Google Scholar 

  143. Rohwetter, P., Eisermann, R., and Krebber, K., Random quadrature demodulation for direct detection single-pulse Rayleigh C-OTDR, J. Lightwave Technol., 2016, vol. 34, no. 19, pp. 4437–4444.  https://doi.org/10.1109/JLT.2016.2557586

    Article  Google Scholar 

  144. Sheng, L., Yan, J., Li, L., Yuan, M., Zhou, S., Xu, R., Liu, J., Nian, F., Li, L., and Liu, Z., Distributed temperature sensing system based on Brillouin scattering effect using a single-photon detector, Int. J. Opt., 2021, vol. 2021, p. 6623987.  https://doi.org/10.1155/2021/6623987

    Article  Google Scholar 

  145. Shi, Y., Wang, Y., Zhao, L., and Fan, Z., An event recognition method for Φ-OTDR sensing system based on deep learning, Sensors, 2019, vol. 19, no. 15, p. 3421.  https://doi.org/10.3390/s19153421

    Article  Google Scholar 

  146. Shinohara, M., Yamada, T., Akuhara, T., Mochizuki, K., and Sakai, S., Precise distributed acoustic sensing measurements by using seafloor optical fiber cable system for seismic monitoring, EGU General Assembly, 2020, p. EGU2020-12055.  https://doi.org/10.5194/egusphere-egu2020-12055

    Book  Google Scholar 

  147. Shragge, J., Yang, J., Issa, N., Roelens, M., Dentith, M., and Schediwy, S., Low-frequency ambient distributed acoustic sensing (DAS): Case study from Perth, Australia, Geophys. J. Int., 2021, vol. 226, no. 1, pp. 564–581.  https://doi.org/10.1093/gji/ggab111

    Article  Google Scholar 

  148. Shuvalov, A.A., Pnev, A.B., Ignat’ev, V.I., Zhirnov, A.A., Oshkin, A.N., Nesterov, E.T., Stepanov, K.V., Tarasov, A.V., Kon’kov, A.I., and Chernutskii, A.O., Possilibity of using distributed acoustic probing for solving geophysical problems, in 14-ya ezhegodnaya nauchno-prakticheskaya konferentsiya i vystavka Inzhenernaya i rudnaya geofizika 2018. 2327 aprelya 2018 (14th Annular Sci.-Pract. Conf. and Exhibition Engineering and Mining Geophysics), Almaty: EAGE, 2018a. https://doi.org/10.3997/2214-4609.201800591

  149. Shuvalov, A.A., Pnev, A.B., Ignatev, V.I., Zhirnov, A.A., Chernutsky, A.O., and Nesterov, E.T., Possibility of distributed acoustic sensing (DAS) for geophysical problems solution, Conf. Proc., Engineering and Mining Geophysics, 2018, European Association of Geoscientists & Engineers, 2018b, pp. 1–7.  https://doi.org/10.3997/2214-4609.201800591

  150. Sladen, A., Rive, D., Ampuero, J.P., De Barros, L., Hello, Y., Calbris, G., and Lamare, P., Distributed sensing of earthquakes and ocean-solid earth interactions on seafloor telecom cables, Nat. Commun., 2019, vol. 10, p. 5777.  https://doi.org/10.1038/s41467-019-13793-z

    Article  Google Scholar 

  151. Smolinski, K., Paitz, P., Bowden, D., Edme, P., Kugler, F., and Fichtner, A., Urban distributed acoustic sensing using in-situ fibre beneath Bern, Switzerland, EGU General Assembly, 2020, pp. EGU2020-8225.  https://doi.org/10.5194/egusphere-egu2020-8225

    Book  Google Scholar 

  152. Song, Z., Zeng, X., and Thurber, C.H., Surface-wave dispersion spectrum inversion method applied to Love and Rayleigh waves recorded by distributed acoustic sensing, Geophysics, 2021a, vol. 86, no. 1, pp. EN1–EN12.  https://doi.org/10.1190/geo2019-0691.1

    Article  Google Scholar 

  153. Song, Z., Zeng, X., Xie, J., Bao, F., and Zhang, G., Sensing shallow structure and traffic noise with fiber-optic internet cables in an urban area, Surv. Geophys., 2021b, vol. 42, pp. 1401–1423.  https://doi.org/10.1007/s10712-021-09678-w

    Article  Google Scholar 

  154. Soriano-Amat, M., Martins, H.F., Durán, V., Costa, L., Martin-Lopez, S., Gonzalez-Herraez, M., and Fernández-Ruiz, M.R., Time-expanded phase-sensitive optical time-domain reflectometry, Light Sci. Appl., 2021, vol. 10, p. 51.  https://doi.org/10.1038/s41377-021-00490-0

    Article  Google Scholar 

  155. Spica, Z.J., Nishida, K., Akuhara, T., Pétrélis, F., Shinohara, M., and Yamada, T., Marine sediment characterized by ocean-bottom fiber-optic seismology, Geophys. Rev. Lett., 2020a, vol. 47, no. 16, p. e2020GL088360.  https://doi.org/10.1029/2020GL088360

  156. Spica, Z.J., Perton, M., Martin, E.R., Beroza, G.C., and Biondi, B., Urban seismic site characterization by fiber-optic seismology, J. Geophys. Res.: Solid Earth, 2020b, vol. 125, p. e2019JB018656.  https://doi.org/10.1029/2019JB018656

  157. Stork, A.L., Baird, A.F., Horne, S.A., Naldrett, G., Lapins, S., Kendall, J.-M., Wookey, J., Verdon, J.P., Clarke, A., and Williams, A., Application of machine learning to microseismic event detection in distributed acoustic sensing data, Geophysics, 2020, vol. 85, no. 5, pp. KS149–KS160. https://doi.org/10.1190/geo2019-0774.1

    Article  Google Scholar 

  158. Tangudu, R. and Sahu, P.K., Strain resolution and spatial resolution improvement of BOCDR-based DSS system using particle swarm optimization algorithm, Optical and Wireless Technologies, Janyani, V., Singh, G., Tiwari, M., and d’Alessandro, A., Eds., Lecture Notes in Electrical Engineering, vol. 546, Singapore: Springer, 2019, pp. 179–192. https://doi.org/10.1007/978-981-13-6159-3_20

  159. Taweesintananon, K., Landrø, M., Brenne, J.K., and Haukanes, A., Distributed acoustic sensing for near-surface imaging using submarine telecommunication cable: a case study in the Trondheimsfjord, Norway, Geophysics, 2021, vol. 86, no. 5, pp. B303–B320.  https://doi.org/10.1190/geo2020-0834.1

    Article  Google Scholar 

  160. Titov, A., Binder, G., Liu, Y., Jin, G., Simmons, J., Tura, A., Monk, D., Byerley, G., and Yates, M., Modeling and interpretation of scattered waves in interstage distributed acoustic sensing vertical seismic profiling survey, Geophysics, 2021, vol. 86, no. 2, pp. D93–D102. https://doi.org/10.1190/geo2020-0293.1

    Article  Google Scholar 

  161. Tkachenko, A.Yu., Lobach, I.A., and Kablukov, S.I., Optical frequency reflectometer based on self-scanning fiber laser, Foton-Ekspress, 2019, no. 6, pp. 44–45.  https://doi.org/10.24411/2308-6920-2019-16017

  162. Tribaldos, V.R. and Ajo-Franklin, J.B., Aquifer monitoring using ambient seismic noise recorded with distributed acoustic sensing (DAS) deployed on dark fiber, J. Geophys. Res.: Solid Earth, 2021, vol. 126, no. 4, p. e2020JB021004.  https://doi.org/10.1029/2020JB021004

  163. Van den Ende, M.P.A. and Ampuero, J.-P., Evaluating seismic beamforming capabilities of distributed acoustic sensing arrays, Solid Earth, 2021, vol. 12, pp. 915–934.  https://doi.org/10.5194/se-12-915-2021

    Article  Google Scholar 

  164. Van Putten, L.D., Masoudi, A., Snook, J., and Brambilla, G., Numerical modelling of a distributed acoustic sensor based on ultra-low loss-enhanced backscattering fibers, Sensors, 2021, vol. 21, no. 20, p. 6869.  https://doi.org/10.3390/s21206869

    Article  Google Scholar 

  165. Verdon, J.P., Horne, S.A., Clarke, A., Stork, A.L., Baird, A.F., and Kendall, J.-M., Microseismic monitoring using a fiber-optic distributed acoustic sensor array, Geophysics, 2020, vol. 85, no. 3, pp. KS89–KS99.  https://doi.org/10.1190/geo2019-0752.1

    Article  Google Scholar 

  166. Volokonno-opticheskaya tekhnika: istoriya, dostizheniya, perspektivy (Fiber-Optic Technology: History, Achievements, and Outlooks), Dmitriev, S.A. and Slepov, N.N., Eds., Moscow: Connect, 2000.

    Google Scholar 

  167. Wagner, A.M., Lindsey, N.J., Dou, S., Gelvin, A., Saari, S., Williams, C., Ekblaw, I., Ulrich, C., Borglin, S., Morales, A., and Ajo-Franklin, J., Permafrost degradation and subsidence observations during a controlled warming experiment, Sci. Rep., 2018, vol. 8, p. 10908.  https://doi.org/10.1038/s41598-018-29292-y

    Article  Google Scholar 

  168. Walter, F., Gräff, D., Lindner, F., Paitz, P., Köpfli, M., Chmiel, M., and Fichtner, A., Distributed acoustic sensing of microseismic sources and wave propagation in glaciated terrain, Nat. Commun., 2020, vol. 11, p. 2436.  https://doi.org/10.1038/s41467-020-15824-6

    Article  Google Scholar 

  169. Wamriew, D., Pevzner, R., Maltsev, E., and Pissarenko, D., Deep neural networks for detection and location of microseismic events and velocity model inversion from microseismic data acquired by distributed acoustic sensing array, Sensors, 2021, vol. 21, no. 19, p. 6627.  https://doi.org/10.3390/s21196627

    Article  Google Scholar 

  170. Wang, H.F., Zeng, X., Miller, D.E., Fratta, D., Feigl, K.L., Thurber, C.H., and Mellors, R.J., Ground motion response to an M L 4.3 earthquake using co-located distributed acoustic sensing and seismometer arrays, Geophys. J. Int., 2018, vol. 213, no. 3, pp. 2020–2036.  https://doi.org/10.1093/gji/ggy102

    Article  Google Scholar 

  171. Wang, Z.N., Zeng, J.J., Li, J., Fan, M.Q., Wu, H., Peng, F., Zhang, L., Zhou, Y., and Rao, Y.J., Ultra-long phase-sensitive OTDR with hybrid distributed amplification, Opt. Lett., 2014, vol. 39, pp. 5866–5869.  https://doi.org/10.1364/OL.39.005866

    Article  Google Scholar 

  172. Wang, Z., Zheng, H., Li, L., Liang, J., Wang, X., Lu, B., Ye, Q., Qu, R., and Cai, H., Practical multi-class event classification approach for distributed vibration sensing using deep dual path network, Opt. Express, 2019, vol. 27, pp. 23682–23692.  https://doi.org/10.1364/OE.27.023682

    Article  Google Scholar 

  173. Wang, Z., Lu, B., Ye, Q., and Cai, H., Recent progress in distributed fiber acoustic sensing with Φ-OTDR, Sensors, 2020, vol. 20, no. 22, p. 6594.  https://doi.org/10.3390/s20226594

    Article  Google Scholar 

  174. Wu, H., Yang, M., Yang, S., Lu, H., Wang, C., and Rao, Y., A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network, IEEE Access, 2020, vol. 8, pp. 119448–119457.  https://doi.org/10.1109/ACCESS.2020.3004207

    Article  Google Scholar 

  175. Wu, Y., Richter, P., Hull, R., and Farhadiroushan, M., Hydraulic frac-hit corridor (FHC) monitoring and analysis with high-resolution distributed acoustic sensing (DAS) and far-field strain (FFS) measurements, First Break, 2020, vol. 38, pp. 65–70.  https://doi.org/10.3997/1365-2397.fb2020045

    Article  Google Scholar 

  176. Wuestefeld, A. and Weinzierl, W., Design considerations for using distributed acoustic sensing for cross-well seismics: A case study for CO2 storage, Geophys. Prospect., 2020, vol. 68, pp. 1893–1905.  https://doi.org/10.1111/1365-2478.12965

    Article  Google Scholar 

  177. Xiong, J., Wang, Z., Wu, Y., and Rao, Y., Single-shot COTDR using sub-chirped-pulse extraction algorithm for distributed strain sensing, J. Lightwave Technol., 2020, vol. 38, no. 7, pp. 2028–2036.  https://doi.org/10.1364/JLT.38.002028

    Article  Google Scholar 

  178. Xue, Y., Niu, Y., and Gong, S., External modulation optical coherent domain reflectometry with long measurement range, Sensors, 2021, vol. 21, no. 16, p. 5510.  https://doi.org/10.3390/s21165510

    Article  Google Scholar 

  179. Yu, C., Zhan, Z., Lindsey, N.J., Ajo-Franklin, J.B., and Robertson, M., The potential of DAS in teleseismic studies: Insights from the Goldstone experiment, Geophys. Rev. Lett., 2019, vol. 46, no. 3, pp. 1320–1328.  https://doi.org/10.1029/2018GL081195

    Article  Google Scholar 

  180. Yuan, Q., Chai, J., Zhang, Y., Liu, Y., and Ren, Y., Investigation of deformation pattern and movement law of the huge-thick conglomerate stratum by a large-scale 3D model test with distributed optical fiber sensor monitoring, Sensors, 2021, vol. 21, no. 17, p. 5985.  https://doi.org/10.3390/s21175985

    Article  Google Scholar 

  181. Yuan, S., Lellouch, A., Clapp, R.G., and Biondi, B., Near-surface characterization using a roadside distributed acoustic sensing array, Leading Edge, 2020, vol. 39, no. 9, pp. 646–653.  https://doi.org/10.1190/tle39090646.1

    Article  Google Scholar 

  182. Zhang, C.-C., Shi, B., Zhu, H.-H., Wang, B.-J., and Wei, G.-Q., Toward distributed fiber-optic sensing of subsurface deformation: A theoretical quantification of ground-borehole- cable interaction, J. Geophys. Res.: Solid Earth, 2020, vol. 125, no. 3, p. e2019JB018878.  https://doi.org/10.1029/2019JB018878

  183. Zhang, C.C., Shi, B., Zhang, S., Gu, K., Liu, S.-P., Gong, X.-L., and Wei, G.-Q., Microanchored borehole fiber optics allows strain profiling of the shallow subsurface, Sci. Rep., 2021, vol. 11, p. 9173.  https://doi.org/10.1038/s41598-021-88526-8

    Article  Google Scholar 

  184. Zhang, J., Zheng, H., Zhu, T., Yin, G., Liu, M., Bai, Y., Qu, D., Qiu, F., and Huang, X., Distributed fiber sparse-wideband vibration sensing by sub-Nyquist additive random sampling, Opt. Lett., 2018, vol. 43, pp. 2022–2025.  https://doi.org/10.1364/OL.43.002022

    Article  Google Scholar 

  185. Zhang, Y., Liu, J., Xiong, F., Zhang, X., Chen, X., Ding, Z., Zheng, Y., Wang, F., and Chen, M., A space-division multiplexing method for fading noise suppression in the Φ-OTDR system, Sensors, 2021, vol. 21, no. 5, p. 1694.https://doi.org/10.3390/s21051694

    Article  Google Scholar 

  186. Zhang, Z., Fang, Z., Stefani, J., DiSiena, J., Bevc, D., Ning, I.L.C., Hughes, K., and Tan, Y., Modeling of fiber-optic strain responses to hydraulic fracturing, Geophysics, 2020, vol. 85, no. 6, pp. A45–A50.  https://doi.org/10.1190/geo2020-0083.1

    Article  Google Scholar 

  187. Zhou, D.-P., Li, W., Chen, L., and Bao, X., Distributed temperature and strain discrimination with stimulated Brillouin scattering and Rayleigh backscatter in an optical fiber, Sensors, 2013, vol. 13, no. 2, pp. 1836–1845.  https://doi.org/10.3390/s130201836

    Article  Google Scholar 

  188. Zhou, D.-P., Chen, L., and Bao, X., Distributed dynamic strain measurement using optical frequency-domain reflectometry, Appl. Opt., 2016, vol. 55, no. 24, pp. 6735–6739.  https://doi.org/10.1364/AO.55.006735

    Article  Google Scholar 

Download references

Funding

The study was carried out within the state tasks of the Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, and the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Kislov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kislov, K.V., Gravirov, V.V. Distributed Acoustic Sensing: A New Tool or a New Paradigm. Seism. Instr. 58, 485–508 (2022). https://doi.org/10.3103/S0747923922050085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922050085

Keywords:

Navigation