Skip to main content
Log in

Analysis of the Time Structure of Strain Processes in the Ashgabat Fault Zone (Northern Kopet Dag)

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The paper presents the results of long-term (55 years) ground-based geodetic observations with increased spatial and temporal detail (the distance between reference points is 0.3–0.5 km, and the intervals between measurements are 1–2 months) in the Ashgabat fault zone (Northern Kopet Dag); local (with a width of 0.5 km) anomalous deformations of the Earth’s surface with average annual deformations rates of 1–3 × 10–5/year are detected. The results of comparing the velocities of vertical and horizontal displacements of the Earth’s surface in the Ashgabat fault zone with data on the modern kinematics of interaction of the Turan and Iranian plates, obtained from GNSS measurements according to the Iranian Geodetic Network, are discussed; it is shown that the rate of reduction of the Kopet Dag based on ground geodetic measurements is almost 100 times less than in GPS observations. This proves that local vertical displacement anomalies occur under conditions of a quasi-static regional stress field. Spectral analysis of long-term series of leveling observations was carried out, and the prevailing periods of anomalies of vertical displacements of the Earth’s surface were revealed. It is demonstrated that the annual harmonic dominates in the block parts of the leveling profiles. The maximum periods in the fault zone do not correspond to the annual component and have a shorter duration. It is established that the annual harmonic is associated with seasonal thermoelastic strain and local changes in the fault zone are caused by periodic changes in the pore pressure associated with the precipitation regime. A mechanism of parametric excitation of local vertical displacements of the Earth’s surface is proposed, when changes in the internal parameters of the medium (bulk elastic modulus) occur under stationary regional loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Aleshin, I.M., Ivanov, S.D., Koryagin, V.N., Kuzmin, Yu.O., Perederin, F.V., Shirokov, I.A., and Fattakhov, E.A., Online publication of tiltmeter data based on the SeedLink Protocol, Seism. Instrum., 2018, vol. 54, pp. 254–259.  https://doi.org/10.3103/S0747923918030027

    Article  Google Scholar 

  2. Allen, M., Jackson, J., and Walker, R., Late Cenozoic reorganization of the Arabia–Eurasia collision and the comparison of short-term and long-term deformations rates, Tectonics, 2008, vol. 23, no. 2, p. TC2008.https://doi.org/10.1029/2003TC001530

    Article  Google Scholar 

  3. Amurskiy, G.I., The deep structure of the Kopetdagh, Geotectonics, 1971, no. 1, pp. 34–40.

  4. Berger, J., A note on thermoelastic strains and tilts, J. Geophys. Res., 1975, vol. 80, no. 2, pp. 274–277.  https://doi.org/10.1029/JB080i002p00274

    Article  Google Scholar 

  5. Deshcherevskii, A.V. and Sidorin, A.Ya., Periodograms of superimposed epochs in search for hidden rhythms in experimental data time series, Seism. Instrum., 2012a, pp. 57–74. https://doi.org/10.3103/S0747923912010033

  6. Deshcherevskii, A.V. and Sidorin, A.Ya., Comparison of periodograms of superimposed epochs and Fourier spectra of experimental series, Seism. Instrum., 2012b, vol. 48, pp. 235–255.  https://doi.org/10.3103/S0747923912030048

    Article  Google Scholar 

  7. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technologies for analyzing geophysical time series: Part 1. Software requirements, Seism. Instrum., 2017a, vol. 53, pp. 46–59.  https://doi.org/10.3103/S0747923917010030

    Article  Google Scholar 

  8. Deshcherevskii, A.V., Zhuravlev, V.I., Nikolsky, A.N., and Sidorin, A.Ya., Technology for analyzing geophysical time series: Part 2. WinABD—A software package for maintaining and analyzing geophysical monitoring data, Seism. Instrum., 2017b, vol. 53, pp. 203–223.  https://doi.org/10.3103/S0747923917030021

    Article  Google Scholar 

  9. Deshcherevskii, A.V., Sidorin, A.Ya., and Fattakhov, E.A., Complex technique for describing and filtering exogenous effects in monitoring data taking into account the type of observations and defects of experimental data, Nauka Tekhnol. Razrab., 2019, vol. 98, no. 2, pp. 25–60.  https://doi.org/10.21455/std2019.2-2

    Article  Google Scholar 

  10. Dzurisin, D., Volcano Deformation: Geodetic Monitoring Techniques, Springer Praxis Books, Berlin: Springer-Verlag, 2007.  https://doi.org/10.1007/978-3-540-49302-0

    Book  Google Scholar 

  11. Eshelby, J.D., Elastic inclusions and inhomogeneities, Progress in Solid Mechanics, Sneddon, I.N. and Hill, R., Eds., Amsterdam: North-Holland, 1961, vol. 2, pp. 87–140.

    Google Scholar 

  12. Fattakhov, E.A., Spectral-temporal analysis of laser rangefinder obserations on the Kamchatsky and Ashgabad geodynamic polygons, Vestn. Sib. Gos. Univ. Geosistem i Tekhnologii, 2017, vol. 22, no. 4, pp. 5–17.

    Google Scholar 

  13. Hollingsworth, J., Jackson, J., Walker, R., Gheitanchi, M.R., and Bolourchi, M.J., Strike-slip faulting, rotation, and along-strike elongation in the Kopeh Dagh mountains, NE Iran, Geophys. J. Int., 2006, vol. 166, no. 3, pp. 1161–1177.  https://doi.org/10.1111/j.1365-246X.2006.02983.x

    Article  Google Scholar 

  14. Izyumov, S.F. and Kuzmin, Yu.O., Study of the recent geodynamic processes in the Kopet-Dag region, Izv., Phys. Solid Earth, 2014, vol. 50, pp. 719–731.  https://doi.org/10.1134/S1069351314060019

    Article  Google Scholar 

  15. Izyumov, S.F., Fattakhov, E.A., and Panfilova, T.V., Spectral-temporal analysis of deformation processes in fault zones of Kopet Dagh, Pyataya tektonofizicheskaya konferentsiya v IFZ RAN. Tektonofizika i aktual’nye voprosy nauk o Zemle (Fifth Tectonophysics Conf. at the Schmidt Inst. of Physics of the Earth, Russian Academy of Sciences: Tectonophysics and Urgent Questions of Earth Sciences), Moscow, 2020, pp. 319–325.

  16. Kalugin, P.I., Yuzhnyi Kopetdag (Geologicheskoe opisanie) (Southern Kopet Dagh: Geological Description). Ashgabad: Ylym, 1977, vol. 215.

  17. Kuzmin, Yu.O., Recent geodynamics of fault zones of sedimentary basins and processes of earthquake preparation, Prognoz zemletryasenii (Prediction of Earthquakes), Dushanbe: Donish, 1989, no. 11, pp. 52–60.

  18. Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Recent Geodynamics and Estimation of Geodynamic Risk at Subsurface Resources Management), Moscow: Agentstvo Ekonomicheskikh Novostei, 1999.

  19. Kuzmin, Yu.O., Problematic issues in studying deformation processes in recent geodynamics, Gornyi Inf.-Anal. Byull., 2008, no. 3, pp. 98–107.

  20. Kuzmin, Yu.O., Tectonophysics and recent geodynamics, Izv., Phys. Solid Earth, 2009, vol. 45, p. 973.  https://doi.org/10.1134/S1069351309110056

    Article  Google Scholar 

  21. Kuzmin, Yu.O., Recent geodynamics of the faults and paradoxes of the rates of deformation, Izv., Phys. Solid Earth, 2013, vol. 49, pp. 626–642.  https://doi.org/10.1134/S1069351313050029

    Article  Google Scholar 

  22. Kuzmin, Yu.O., Recent geodynamics of dangerous faults, Izv., Phys. Solid Earth, 2016, vol. 52, pp. 709–722.  https://doi.org/10.1134/S1069351316050074

    Article  Google Scholar 

  23. Kuzmin, Yu.O., Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics, Izv., Phys. Solid Earth, 2017, vol. 53, pp. 825–839.  https://doi.org/10.1134/S1069351317060027

    Article  Google Scholar 

  24. Kuzmin, Yu.O., Recent geodynamics of tensile faults, Izv., Phys. Solid Earth, 2018, vol. 54, pp. 886–903.  https://doi.org/10.1134/S1069351318060083

    Article  Google Scholar 

  25. Kuzmin, Yu.O., Recent geodynamics: from crustal movements to monitoring critical objects, Izv., Phys. Solid Earth, 2019a, vol. 55, pp. 56–86.  https://doi.org/10.1134/S106935131901004X

    Article  Google Scholar 

  26. Kuzmin, Yu.O., Induced deformations of fault zones, Izv., Phys. Solid Earth, 2019b, pp. 753–765.  https://doi.org/10.1134/S1069351319050069

  27. Kuzmin, Yu.O., Recent geodynamics and slow deformation waves, Izv., Phys. Solid Earth, 2020, vol. 56, pp. 595–603.  https://doi.org/10.1134/S1069351320040059

    Article  Google Scholar 

  28. Kuzmin, Yu.O., Geodynamic evolution of the Earth’s crust of Central Asia and recent geodynamics of the Kopet Dag region, Turkmenistan, Izv., Phys. Solid Earth, 2021, vol. 57, pp. 131–139.  https://doi.org/10.1134/S1069351321010055

    Article  Google Scholar 

  29. Kuzmin, Yu.O., Fattakhov, E.A., and Shirokov, I.A., Analysis of long-term stability of tilt registration with two instruments of the same pedestal, Seism. Instrum., 2021, vol. 57, pp. 269–275.  https://doi.org/10.3103/S0747923921030087

    Article  Google Scholar 

  30. Mindlin, R.D. and Cheng, D.H., Nuclei of strain in the semi-infinite solid, J. Appl. Phys., 1950, vol. 21, no. 9, pp. 926–933.  https://doi.org/10.1063/1.1699785

    Article  Google Scholar 

  31. Molodenskii, S.M., On local abnormal amplitudes and phases of tidal slopes and deformation, Izv. Akad. Nauk SSSR, Fiz. Zem., 1983, no. 7, pp. 3–15.

  32. Mura, T., Micromechanics of Defects in Solids, Norwell: Kluwer Academic Publishers, 1987, 2nd ed.

    Book  Google Scholar 

  33. Nilforoushan, F., Masson, F., Vernant, P., Vigny, C., Martinod, J., Abbassi, M., Nankali, H., Hatzfeld, D., Bayer, R., Tavakoli, F., Ashtiani, A., Doerflinger, E., Daignières, M., Collard, P., and Chéry, J., GPS network monitors the Arabia-Eurasia collision deformation in Iran, J. Geod., 2003, vol. 77, no. 7, pp. 411–422.  https://doi.org/10.1007/s00190-003-0326-5

    Article  Google Scholar 

  34. Nowacki, W., Thermoelasticity, Warsaw: PWN, 1986, 2nd ed.

    Google Scholar 

  35. Popov, V.V., On thermoelastic deformations of Earth’s surface, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1960, no. 7, pp. 913–921.

  36. Robert, A.M.M., Letouzey, J., Kavoosi, M.A., Sherkati, S., Müller, C., Vergés, J., and Aghababaei, A., Structural evolution of the Kopeh Dagh fold-and-thrust belt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin, Mar. Pet. Geol., 2014, no. 57, pp. 68–87.https://doi.org/10.1016/j.marpetgeo.2014.05.002

  37. Saberi, E., Yassaghi, A., and Djamour, Y., Application of geodetic leveling data on recent fault activity in Central Alborz, Iran, Geophys. J. Int., 2017, vol. 211, no. 2, pp. 751–765.  https://doi.org/10.1093/gji/ggx311

    Article  Google Scholar 

  38. Segall, P., Earthquake and Volcano Deformation, Princeton: Princeton Univ. Press, 2010.

    Book  Google Scholar 

  39. Trifonov, V.G., Late quaternary tectonic movements of western and Central Asia, Geol. Soc. Am. Bull., 1978, vol. 89, pp. 1059–1072.  https://doi.org/10.1130/0016-7606(1978)89<1059:LQTMOW>2.0.CO;2

    Article  Google Scholar 

  40. Tsurkis, I.Ya. and Kuzmin, Yu.O., Stress state of an elastic plane with one or more inclusions of arbitrary shape: The case of identical shear moduli, Mech. Solids, 2021.  https://doi.org/10.3103/S0025654422010046

  41. Vernant, Ph., Nilforoushan, F., Hatzfeld, D., Abbassi, M.R., Vigny, C., Masson, F., Nankali, H., Martinod, J., Ashtiani, A., Bayer, R., Tavakoli, F., and Chéry, J., Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman, Geophys. J. Int., 2004, vol. 157, no. 1, pp. 381–398.  https://doi.org/10.1111/j.1365-246X.2004.02222.x

    Article  Google Scholar 

  42. Walpersdorf, A., Manighetti, I., Mousavi, Z., Tavakoli, F., Vergnolle, M., Jadidi, A., Hatzfeld, D., Aghamohammadi, A., Bigot, A., Djamour, Y., Nankali, H., and Sedighi, M., Present-day kinematics and fault slip rates in eastern Iran, derived from 11 years of GPS data, J. Geophys. Res., 2014, vol. 119, no. 2, pp. 1359–1383.  https://doi.org/10.1002/2013JB010620

    Article  Google Scholar 

  43. Walters, R.J., Elliott, J.R., Li, Z., and Parsons, B., Rapid strain accumulation on the Ashkabad fault (Turkmenistan) from atmosphere-corrected InSAR, J. Geophys. Res., 2013, vol. 118, no. 7, pp. 3674–3690.  https://doi.org/10.1002/jgrb.50236

    Article  Google Scholar 

Download references

Funding

The study was carried out within the state task of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kuzmin.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, Y.O., Fattakhov, E.A. Analysis of the Time Structure of Strain Processes in the Ashgabat Fault Zone (Northern Kopet Dag). Seism. Instr. 58, 148–159 (2022). https://doi.org/10.3103/S0747923922020062

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922020062

Keywords:

Navigation