Skip to main content
Log in

Network of Multidisciplinary Borehole Measurements at the Petropavlovsk-Kamchatsky Geodynamic Testing Area

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The article presents data on the main stages of creating a network of multidisciplinary borehole measurements at the Petropavlovsk-Kamchatsky geodynamic testing area, its current configuration, the composition of the measurements, and technical support. Matters related to the choice of measuring boreholes are discussed, as well as organizational and technical solutions that ensured the creation and successful operation of the network for more than 20 years. Currently, the network includes five radiotelemetric points created on the basis of boreholes, where geoacoustic measurements, electromagnetic measurements with underground electric antennas, and other types of measurements are carried out. The network makes it possible to conduct promising fundamental scientific research in the study of endogenic processes associated with preparation of strong earthquakes. In the course of long-term measurements, it was found that the developed methods for monitoring changes in the stress-strain state of the geomedium, which are based on data from borehole geoacoustic measurements and measurements with underground electric antennas, can be successfully used in regional systems for medium- and short-term earthquake forecasting. Most of the technical tools used in the borehole measurement network are the authors’ own developments. In fact, the network is an experimental base for studying the processes of preparation of strong earthquakes in one of the most seismically active regions of the world, as well as the information base of a system for medium- and short-term forecasting of strong Kamchatka earthquakes, operating in the area of Petropavlovsk-Kamchatsky.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. V.V. Ovcharenko, Report on the results of prospecting for thermal waters in the southwestern part of the Avacha–Koryak volcanic group (section 202) in 1970–1071. Petropavlovsk-Kamchatsky, 1971. Report on the results of prospecting and exploration work at the Verkhneparatunskoe hydrothermal deposit. Paratuns hydrogeological expedition of Kamchatka PGO, Mingeo USSR, settlement of Termalny, Kamchatka oblast, 1980, vol. 4. Report on the main geological results of parametric and exploratory drilling of the Kamchatka oil and gas exploration expedition for 1984. Kamchatka oil and gas exploration expedition of PGO Sakhalingeologiya, 1985. Report on the results of drilling exploration of borehole G-1 for thermal waters at the Khlebozavod sector of the Petropavlovsk site in 1986–1988, Petropavlovsk-Kamchatsky, 1988. Report on general prospecting for thermal waters at the Radygin site in 1991–1995, settlement of Termalny, Kamchatka oblast, 1995.

  2. Report on results of drilling exploration borehole G-1 for thermal waters at Khlebozavod sector of Petropavlovsk site in 1986–1988. Petropavlovsk-Kamchatsky, 1988. 193 s.

REFERENCES

  1. Belyakov, A.S., Magnetoelastic acoustic geobackgrounds for geophysical studies, Seism. Prib., 2004, vol. 40, pp. 28–35.

    Google Scholar 

  2. Belyakov, A.S. and Nikolaev, A.V., Technique of seismoacoustic observations, Izv., Phys. Solid Earth, 1995, vol. 31, no. 8, pp. 720–723.

    Google Scholar 

  3. Bogdanov, V., Gavrilov, V., Pulinets, S., and Ouzounov, D., Responses to the preparation of strong Kamchatka earth-quakes in the lithosphere-atmosphere-ionosphere system, based on new data from integrated ground and ionospheric monitoring, E3S Web Conf., 2020, vol. 196, p. 03005.  https://doi.org/10.1051/e3sconf/202019603005

  4. Deshcherevskii, A.V., Zhuravlev, V.I., Nikol’skii, A.N., and Sidorin, A.Ya., ABD software package—Universal tool for analyzing the data of regime observations, Nauka Tekhnol. Razrab., 2016, vol. 95, no. 4, pp. 35–48.  https://doi.org/10.21455/std2016.4-6

    Article  Google Scholar 

  5. Deshcherevskii, A.V., Sidorin, A.Ya., and Fattakhov, E.A., Complex technique for describing and filtering exogenous effects in monitoring data taking into account the type of observations and defects of experimental data, Nauka Tekhnol. Razrab., 2019, vol. 98, no. 2, pp. 25–60.  https://doi.org/10.21455/std2019.2-2

    Article  Google Scholar 

  6. Fedotov, S.A. and Solomatin, A.V., Long-term earthquake prediction (LTEP) for the Kuril–Kamchatka island arc, June 2019 to May 2024; properties of preceding seismicity from January 2017 to May 2019. The development and practical application of the LTEP method, J. Volcanol. Seismol., 2019, vol. 13, pp. 349–362.  https://doi.org/10.1134/S0742046319060022

    Article  Google Scholar 

  7. Fedotov, S.A., Solomatin, A.V., and Kiryukhin, A.V., Long-term seismic prediction for Kuril–Kamchatka island arc from May 2017 to April 2022, its development and application; studying the effect of the deep Okhotsk Sea earthquake with M = 8.3 on May 24, 2013, Materialy Shestoi nauchno-tekhnicheskoi konferentsii Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii (Materials of Sixth Sci.-Tech. Conf. on Problems of Complex Geophysical Monitoring in the Far East of Russia), Petropavlovsk-Kamchatsky, 2017, Obninsk: Edinaya Geofiz. Sluzhba Ross. Akad. Nauk, 2017, pp. 154–158.

  8. Fujinawa, Y., Takahashi, K., and Tomizawa, I., Characteristcs of casing-pipe antennas, Techn. Note Nat. Res. Inst. Earth Sci. Disaster Prev., 1995, no. 166, pp. 83–94.

  9. Gal’perin, E.I., Nersesov, I.L., and Vorovskii, L.M., Izuchenie seismicheskogo rezhima krupnykh promyshlennykh tsentrov (Studying the Seismic Regime of Large Industrial Centers), Moscow: Nauka, 1978.

  10. Gavrilov, V.A., Physical causes of diurnal variations in the geoacoustic emission level, Dokl. Earth Sci., 2007, vol. 414, pp. 638–641.  https://doi.org/10.1134/S1028334X07040320

    Article  Google Scholar 

  11. Gavrilov, V.A., Dynamics of microfissure of geomedium in relation with the catastrophic 2006–2007 Simushir earthquakes by the data of complex borehole measurements in Kamchatka, Tektonofizika i aktual’nye voprosy nauk o Zemle. K 40-letiyu sozdaniya M.V. Gzovskim laboratorii tektonofiziki v IFZ RAN: Materialy dokladov Vserossiiskoi konferentsii (Tectonophysics and Topical Questions of Earth Sciences. To the 40th Anniversary from the Creation of the Tectonophysical Laboratory in the Inst. of Earth Physics of the Russian Academy of Sciences by M.V. Gzovskii: Materials of Lectures of the All-Russian Conf.), Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2009, vol. 2, pp. 295–302.

    Google Scholar 

  12. Gavrilov, V.A., Method for continuous monitoring of electrical rock resistivity, Seism. Instrum., 2014, vol. 50, pp. 196–205.  https://doi.org/10.3103/S0747923914030062

    Article  Google Scholar 

  13. Gavrilov, V.A., Action of time-varying electromagnetic fields on the geoacoustic processes: Empirical regularities and physical mechanisms, Doctoral (Phys.–Math.) Dissertation, Moscow: Schmidt Inst. of Physics of the Earth, Russ. Acad. Sci., 2017.

  14. Gavrilov, V.A. and Naumov, A.V., Modulation of geoacoustic emission intensity by time-varying electric field, Russ. J. Earth Sci., 2017, vol. 17, no. 1, p. ES1003.  https://doi.org/10.2205/2017ES000591

    Article  Google Scholar 

  15. Gavrilov, V.A., Morozova, Yu.V., and Storcheus, A.V., Variations in the level of geoacoustic emission in deep borehole G-1 (Kamchatka) and their relation with seismic activity, Vulkanol. Seismol., 2006, no. 1, pp. 52–67.

  16. Gavrilov, V., Bogomolov, L., Morozova, Y., and Storcheus, A., Variations in geoacoustic emissions in a deep borehole and its correlation with seismicity, Ann. Geophys., 2008, vol. 51, nos. 5–6, pp. 737–753.  https://doi.org/10.4401/ag-3013

    Article  Google Scholar 

  17. Gavrilov, V.A., Panteleev, I.A., Ryabinin, G.V., and Morozova, Yu.V., Modulating impact of electromagnetic radiation on geoacoustic emission of rocks, Russ. J. Earth Sci., 2013, vol. 13, no. 1, p. ES1002.  https://doi.org/10.2205/2013ES000527

    Article  Google Scholar 

  18. Gavrilov, V.A., Panteleev, I.A., and Ryabinin, G.V., The physical basis of the effects caused by electromagnetic forcing in the intensity of geoacoustic processes, Izv., Phys. Solid Earth, 2014a, vol. 50, pp. 87–101. https://doi.org/10.1134/S1069351314010042

    Article  Google Scholar 

  19. Gavrilov, V.A., Buss, Yu.Yu., Vlasov, Yu.A., Denisenko, V.P., Morozova, Yu.V., Poltavtseva, E.V., and Fedoristov, O.V., On the prediction of South-Kamchatka earthquake (February 28, 2013, M W = 6.8) by the data of complex borehole geophysical measurements, Sil’nye kamchatskie zemletryaseniya 2013 goda (Strong Kamchatka Earthquakes in 2013), Chebrov, V.N, Ed., Petropavlovsk-Kamchatsky: Novaya Kniga, 2014b.

  20. Gavrilov, V.A., Poltavtseva, E.V., Deshcherevskii, A.V., Buss, Yu.Yu., and Morozova, Yu.V., Geological environmental monitoring based on synchronous borehole geoacoustic and electromagnetic measurements: Use of natural electromagnetic radiation, Seism. Instrum., 2016, vol. 52, pp. 266–277.  https://doi.org/10.3103/S0747923916030051

    Article  Google Scholar 

  21. Gavrilov, V.A., Deshcherevskii, A.V., Poltavtseva, E.V., and Sidorin, A.Ya., Technologies of preliminary data processing for multidisciplinary geophysical monitoring and a case study of their application in the Kamchatka geoacoustic observation system, Seism. Instrum., 2017, vol. 53, pp. 296–308.  https://doi.org/10.3103/S0747923917040053

    Article  Google Scholar 

  22. Gavrilov, V.A., Bogdanov, V.V., Buss, Yu.Yu., Morozova, Yu.V., Pavlov, A.V., and Gasheva, O.V., Experience of shared use of data of complex borehole measurements and results of daily monitoring of the ionosphere state at preparing the conclusions about the seismic hazard for Kamchatka krai, Sed’maya nauchno-tekhnicheskaya konferentsiya Problemy kompleksnogo geofizicheskogo monitoringa Dal’nego Vostoka Rossii. Tezisy dokladov (Seventh Sci.-Tech. Conf. on Problems of Complex Geophysical Monitoring of the Far East of Russia: Lecture Notes), Petropavlovsk-Kamchatsky, 2019, Petropavlovsk-Kamchatsky: Kamchatskii Filial Edinoi Geofiz. Sluzhby Ross. Akad. Nauk, 2019a.

  23. Gavrilov, V.A., Morozova, Yu.V., Deshcherevskii, A.V., Buss, Yu.Yu., and Panteleev, I.A., Reflection of the process of preparation of the close strong Zhupanovo earthquake in the data of complex borehole measurements at Petropavlovsk-Kamchatsky geodynamic test area, Triggernye effekty v geosistemakh: Materialy V Mezhdunarodnoi konferentsii (Trigger Effects in Geosystems: Materials of the Fifth Int. Conf.), Moskva, 2019, Adushkin, V.V. and Kocharyan, G.G., Eds., Moscow: Torus Press, 2019b.

  24. Gavrilov, V.A., Panteleev, I.A., Deshcherevskii, A.V., Lander, A.V., Morozova, Yu.V., Buss, Yu.Yu., and Vlasov, Yu.A., Stress–strain state monitoring of geological medium based on the multi-instrumental measurements in boreholes: Experience of research at the Petropavlovsk-Kamchatsky geodynamic testing site (Kamchatka, Russia), Pure Appl. Geophys., 2020, vol. 177, no. 1, pp. 397–419.  https://doi.org/10.1007/s00024-019-02311-3

    Article  Google Scholar 

  25. Gavrilov, V.A., Morozova, Yu.V., Buss, Yu.Yu., and Poltavtseva, E.V., Results of simultaneous geoacoustic measurements at different depths in the borehole G-1: Relation with the peculiarities of geological structure of near-hole space, Vulkanizm i svyazannye s nim protsessy. Materialy XXIV ezhegodnoi nauchnoi konferentsii, posvyashchennoi Dnyu vulkanologa (Volcanism and Related Processes: Materials of the 24th Annual Sci. Conf. Devoted to the Volcanologist Day), Petropavlovsk-Kamchatsky, 2021, Petropavlovsk-Kamchatsky: Inst. Vulkanol. Seismol. Dal’nevost. Otd. Ross. Akad. Nauk, 2021, pp. 83–86.

  26. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii, Mashtab 1:200000. Seriya Yuzhno-Kamchatskaya. Listy N-57-XXI (Severnye Koryaki), N-57-XXVII (Petropavlovsk-Kamchatskii), N-57-XXXIII (sopka Mutnovskaya) (State Geological Map of the Russian Federation, Scale 1 : 200 000. Pages N-57-XXI (Northern Koryaki), N-57-XXVII (Petropavlosk-Kamchatsky), and N-57-XXXIII (Mutnovskaya sopka)), Sheimovich, V.S. and Markovskii, B.A., Eds., Moscow, 2000.

  27. Kissin, I.G., Flyuidy v zemnoi kore. Geofizicheskie i tektonicheskie aspekty (Fluids in Earth Crust: Geophysical and Tectonic Aspects), Moscow: Nauka, 2015.

  28. Kiyashko, B.V., Korotin, P.I., Chashchin, A.S., and Kharitonov, A.V., Digital hydroacoustic received, Prib. Sist. Razvedochnoi Geofiz., 2007, no. 1, pp. 35–39.

  29. Analog-to-digital and digita-to-analog module Zet220: technical characteristics. https://zetlab.com/shop/izmeritelnoe-oborudovanie/moduli-atsp-tsap/atsp-tsap-zet-220/. Cited May 25, 2021.

  30. Novyi katalog sil’nykh zemletryasenii na territorii SSSR s drevneishikh vremen do 1975 g (Novel Catalog of Strong Earthquakes on the Territory of USSR from Ancient Times until 1975), Kondorska, N.V. and Shebalin, N.V., Eds., Moscow: Nauka, 1977.

    Google Scholar 

  31. Prognozirovanie zemletryasenii na Kamchatke. Po materialam raboty Kamchatskogo filiala Rossiiskogo ekspertnogo soveta po prognozu zemletryasenii, otsenke seismicheskoi opasnosti i riska v 19982009 gg. (Prediction of Kamchatka Earthquakes: Following the Materials of Work of the Kamchatka Branch of the Russian Expert Council on Predicting Earthquakes and Assessing Seismic Hazard and Risk in 1998–2009), Chebrov, V.N., Saltykov, V.A., and Serafimov, Yu.K., Eds., Moscow: Svetoch Plyus, 2011.

  32. Riznichenko, Yu.V., Dimensions of earthquake source and seismic moment, Issledovaniya po fizike zemletryasenii (Studies on Physics of Earthquakes), Moscow: Nauka, 1976, pp. 9–26.

    Google Scholar 

  33. Signal processing package WinPOS: User's Guide. http:// www.nppmera.ru/assets/files/winpos/WPUsersGuide.pdf. Ci-ted May 25, 2021.

  34. Sil’nye kamchatskie zemletryaseniya 1971 goda (Strong Earthquakes in Kamchatka in 1971), Fedotov, S.A., Ed., Vladivostok: Institut Vulkanol. Dal’nevost. Tsentra Akad. Nauk SSSR, 1975.

    Google Scholar 

  35. SNiP II-7–81: Construction in Seismic Regions. Approved by Gosstroi of SSSR on June 15, 1981, instead of SNiP II-A.12–69*, 2000.

  36. Vlasov, Yu.A., Gavrilov, V.A., Denisenko, V.P., and Fedoristov, O.V., Telemetry system of multidisciplinary geophysical monitoring network, Seism. Instrum., 2008, vol. 45, pp. 14–18.  https://doi.org/10.3103/S0747923909010022

    Article  Google Scholar 

Download references

Funding

The study was carried out under state task of the Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences (topic no. 0282-2019-0005) and the state task of Schmidt Institute of Physics of the Earth, Russian Academy of Sciences (topic no. 0144-2019-0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Gavrilov.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavrilov, V.A., Deshcherevskii, A.V., Vlasov, Y.A. et al. Network of Multidisciplinary Borehole Measurements at the Petropavlovsk-Kamchatsky Geodynamic Testing Area. Seism. Instr. 58, 121–138 (2022). https://doi.org/10.3103/S0747923922020050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923922020050

Keywords:

Navigation