Skip to main content
Log in

Stress–Strain State of the Earth’s Crust in the Central Caucasus

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

The Caucasus is a region of continental collision between Eurasia and Arabia and one of the Earth’s most seismically active and rapidly deformed continental regions. The wide range of deformation processes occurring in this relatively limited region makes the Caucasus as a whole and its central parts in particular a unique test area, the study of which can improve our understanding of the complexities of the stress–strain state, as well as the associated seismicity. During the instrumental period of observations, many strong earthquakes have been recorded here, e.g., the August 4, 1974 Bezhta earthquake (Mb = 5.4), the 1978 earthquake with a magnitude of 5.7, the February 23, 1981 Gavaz earthquake (Mb = 5), the October 12, 1992 Barisakho earthquake (Mb = 6.1), and the July 5, 2012 Zaqatala (Mb = 5.7). We have constructed the mechanisms of strong earthquakes and compared the results with the tectonic conditions of the studied region. Based on a morphostructural analysis of the modern relief of the central and eastern Greater Caucasus, a diagram of its morphostructural blocks has been compiled. The average earthquake mechanisms were constructed for the distinguished blocks, the prevailing types of slip in earthquake sources in each selected block were identified, and the fault kinematics were reconstructed. The solution was based on generally accepted tectonophysical theoretical views, with the wide application of modern structural–geomorphological methods, modern GIS technologies, and morphological analysis of the modern relief of this region. The modern tectonic stress field was reconstructed based on seismological data on earthquakes recorded during the entire instrumental period (1971–2019).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Adamia, Sh., Alania, V., Tsereteli, N., Varazanashvili, O., Sadradze, N., Lursmanashvili, N., and Gventsadze, A., Post-collisional tectonics and seismicity of Georgia, in Tectonic Evolution, Collision, and Seismicity of Southwest Asia: In Honor of Manuel Berberianʼs Forty-Five Years of Research Contributions, vol. 525 of Geol. Soc. Am., Spec. Pap., 2017, pp. 535–572. https://doi.org/10.1130/2017.2525(17)

  2. Aki, K., Earthquake generation stress in Japan for the years 1961 to 1963 obtained by smoothing the first motion radiation patterns, Bull. Earthquake Res. Inst., Univ. Tokyo, 1966, vol. 44, no. 2, pp. 447–471.

    Google Scholar 

  3. Avagyan, A., Sosson, M., Karakhanian, A., Philip, H., Rebai, S., Rolland, Y., Melkonyan, R., and Davtyan, V., Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions, in Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform, vol. 340 of Geol. Soc., London, Spec. Publ., Sosson, M., Kaymakci, N., Stephenson, R.A., Bergerat, F., and Starostenko, V., Eds., 2010, pp. 393–408. https://doi.org/10.1144/SP340.17 0305-8719/10

  4. Barrier, E., Vrielynck, B., Bergerat, F., Brunet, M.-F., Mosar, J., Poisson, A., and and Sosson, M., Palaeotectonic Maps of the Middle East: Tectonosedimentary-Palinspastic Maps from Late Norian to Pliocene, Paris: Comm. Geol. Map World, 2008.

  5. Burmin, V.Yu., New approach to determination of hypocentral parameters of near earthquakes, Vulkanol. Seismol., 1992, no. 3, pp. 73–82.

  6. Burmin, V.Yu., Aftershocks of the Racha earthquake of April 29, 1991, Vopr. Inzh. Seismol., 2016, vol. 43, no. 4, pp. 61–65. https://doi.org/10.21455/VIS2016.4-6

  7. Burmin, V.Yu., Assessment of the Caucasus seismological network effectiveness, Seism. Instrum., 2019a, vol. 55, no. 2, pp. 129–135. https://doi.org/10.3103/S074792391902004X

    Article  Google Scholar 

  8. Burmin, V.Yu., Optimal geometry for the seismological observation network in the Caucasus region, Seism. Instrum., 2019b, vol. 55, no. 3, pp. 353–362. https://doi.org/10.3103/S0747923919030034

    Article  Google Scholar 

  9. Burmin, V.Yu., On certain conventional misconceptions in seismology, Seism. Instrum., 2019c, vol. 55, no. 1, pp. 41–58. https://doi.org/10.3103/S0747923919010031

    Article  Google Scholar 

  10. Burmin, V.Yu., Shemeleva, I.B., Fleyfel, L.D., Avetisyan, A.M., and Kazaryan, K.S., Results of seismological data processing for the territory of Armenia, Seism. Instrum., 2017, vol. 53, no. 2, pp. 103–110.

    Article  Google Scholar 

  11. Burmin, V.Yu., Shemeleva, I.B., Fleyfel, L.D., Avetisyan, A.M., and Kazaryan, K.S., Spatial distribution of crustal earthquakes in the Caucasus, Seism. Instrum., 2019a, vol. 55, no. 1, pp. 84–91. https://doi.org/10.3103/S0747923919010043

    Article  Google Scholar 

  12. Burmin, V.Yu., Shemeleva, I.B., Avetisyan, A.M., and Kazaryan, K.S., Deep earthquakes in the Caucasus: Recalculation results, Seism. Instrum., 2019b, vol. 55, no. 6, pp. 650–660. https://doi.org/10.3103/S074792391906001X

    Article  Google Scholar 

  13. Burmin, V.Yu., Avetisyan, A.M., and Kazaryan, K.S., Assessment of the efficiency of Armenian seismological networks, Seism. Instrum., 2020, vol. 56, no. 2, pp. 26–32. https://doi.org/10.3103/S0747923920010041

    Article  Google Scholar 

  14. Byulleten’ seti seismicheskikh stantsii Kavkaza (Bulletin of the Caucasus Seismic Network), Tbilisi: Inst. Geofiz. Akad. Nauk Gruz. SSR, 1973.

  15. Byulleten’ seti seismicheskikh stantsii Kavkaza (Bulletin of the Caucasus Seismic Network), Tbilisi: Inst. Geofiz. Akad. Nauk Gruz. SSR, 1974.

  16. Delvaux, D., The TENSOR program for reconstruction: Examples from East African and the Baikal rift system, Terra Nova, 1993, no. 5, pp. 216.

  17. Delvaux, D., Release of program Win-Tensor 4.0 for tectonic stress inversion: Statistical expression of stress parameters, Geophys. Res. Abstr., 2012, vol. 14, art. no. EGU2012-5899.

    Google Scholar 

  18. Delvaux, D. and Sperner, B., Stress tensor inversion from fault kinematic indicators and focal mechanism data: The TENSOR program, in New Insights into Structural Interpretation and Modeling, vol. 212 of Geol. Soc., London, Spec. Publ., Nieuwland, D.A., Ed., 2003, pp. 75–100. https://doi.org/10.1144/GSL.SP.2003.212.01.06

  19. Gomez, J.M., Bukchin, B., Madariaga, R., and Rogozhin, E.A., A study of the Barisakho, Georgia, earthquake of 1992 October 23 from broad-band surface and body waves, Geophys. J. Inter., 1997, vol. 129, pp. 613–623.

    Article  Google Scholar 

  20. Jackson, J. and Ambraseys, N.N., Convergence between Eurasia and Arabia in eastern Turkey and the Caucasus, in Historical and Prehistorical Earthquakes in the Caucasus, vol. 28 of NATO ASI Ser. 2, Giardini, D. and Balassanian, S., Eds., 1997, pp. 79–90.

  21. Kazaryan, K.S., Burmin, V.Yu., and Avetisyan, A.M., Spatial and temporary changes of the prevailing types of block structure movements of the Javakheti Highland Seism. Instrum., 2020a, vol. 56, no. 3, pp. 213–224. https://doi.org/10.3103/S0747923920020061

    Article  Google Scholar 

  22. Kazaryan, K.S., Burmin, V.Yu., and Avetisyan, A.M., Parameters of the rupture planes of the Spitak source zone from averaged focal mechanisms of the aftershocks, Geofiz. Protsessy Biosfera, 2020b, vol. 19, no. 1, pp. 79–86. https://doi.org/10.21455/GPB2020.1-5

    Article  Google Scholar 

  23. Koçyiğit, A., Yilmaz, A., Adamia, Sh., and Kuloshvili, S., Neotectonics of East Anatolian plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting, Geodin. Acta, 2001, vol. 14, pp. 177–195.

    Article  Google Scholar 

  24. Lander, A.V., The FA2002 Program System to Determine the Focal Mechanisms of Earthquakes in Kamchatka, the Commander Islands and the Northern Kuriles: Report of the Kamchatka EMSD Geophysical Survey of the Russian Academy of Sciences, Petropavlovsk-Kamchatsky, 2004.

    Google Scholar 

  25. Lukk, A.A. and Shevchenko, V.I., Seismicity, tectonics, and GPS geodynamics of the Caucasus, Izv., Phys. Solid Earth, 2019, vol. 55, no. 4, pp. 626–648. https://doi.org/10.1134/S1069351319040062

    Article  Google Scholar 

  26. McClusky, S., Balassanian, S., Barka, A., Demir, C., Ergintav, S., Georgiev, I., Gürkan, O., Hamburger, M., Hurst, K., Kahle, H., Kastens, K., Kekelidze, G., King, R., Kotzev, V., Lenk, O., et al., Global positioning system constraints on plate kinematics and dynamics in the Eastern Mediterranean and Caucasus, J. Geophys. Res.: Solid Earth, 2000, vol. 105, pp. 5695–5719.https://doi.org/10.1029/1999JB900351

    Article  Google Scholar 

  27. Rebaï, S., Philip, H., Dorbath, L., Borisoff, B., Haessler, H., and Cisternas, A., Active tectonics in the Lesser Caucasus: Coexistence of compressive and extensional structures, Tectonics, 1993, vol. 12, no. 5, pp. 1089–1114.

    Article  Google Scholar 

  28. Rebetskii, Yu.L., Sim, L.A., and Marinin, A.V., Ot zerkal skol’zheniya k tektonicheskim napryazheniyam: Metody i algoritmy (From Slickensides to Tectonic Stresses: Methods and Algorithms), Moscow: GEOS, 2017.

  29. Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Cakmak, R., Ozener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., et al., GPS-constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions, J. Geophys. Res.: Solid Earth, 2006, vol. 111, pp. B05411. https://doi.org/10.1029/2005JB004051

    Article  Google Scholar 

  30. Seismicheskii byulleten’ Kavkaza (Seismic Bulletin of the Caucasus), Tbilisi: Metsniereba, 1973–1990.

  31. Sim, L.A., Marinin, A.V., Bryantseva, G.V., and Gordeev, N.A., Tectonic stresses in the regions of Northern Eurasia: Study results, Geodin. Tektonofiz., 2018, vol. 9, no. 3, pp. 771–800. https://doi.org/10.5800/GT-2018-9-3-0371

    Article  Google Scholar 

  32. Shumlianskaya, L.A. and Burmin, V.Yu., Time variations in earthquake focal mechanisms of the Racha-Dzhava seismic zone, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 11, pp. 1726–1733. https://doi.org/10.1134/S0001433819110136

    Article  Google Scholar 

  33. Sokhadze, G., Floyd, M., Godoladze, T., King, R., Cowgill, E.S., Javakhishvili, Z., Hahubia, G., and Reilinger, R., Active convergence between the Lesser and Greater Caucasus in Georgia: Constraints on the tectonic evolution of the Lesser-Greater Caucasus continental collision, Earth Planet. Sci., 2018, vol. 481, pp. 154–161. https://doi.org/10.1016/j.epsl.2017.10.007

    Article  Google Scholar 

  34. Sosson, M., Stephenson, R., Sheremet, Y., Rolland, Y., Adamia, S., Melkonian, R., Kangarli, T., Yegorova, T., Avagyan, A., Galoyan, G., Danelian, T., Hässig, M., Meijers, M., Müller, C., Sahakyan, L., et al., The Eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution, C. R. Geosci., 2016, vol. 348, no. 1, pp. 23–32. https://doi.org/10.1016/j.crte.2015.11.002

    Article  Google Scholar 

  35. Tan, O. and Taymaz, T., Active tectonics of the Caucasus: Earthquake source mechanisms and rupture histories obtained from inversion of teleseismic body waveforms, in Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia, vol. 409 of Geol. Soc. Am., Spec. Pap., Dilek, Y. and Pavlides, S., Eds, 2006, pp. 531–578. https://doi.org/10.1130/2006.2409(25)

  36. Tibaldi, A., Alania, V., Bonali, F.L., Enukidze, O., Tsereteli, N., Kvavadze, N, and Varazanashvili, O., Active inversion tectonics, simple shear folding and back-thrusting at Rioni Basin, Georgia, J. Struct. Geol., 2017a, vol. 96, no. 1, pp. 35–53. https://doi.org/10.1016/j.jsg.2017.01.005

    Article  Google Scholar 

  37. Tibaldi, A., Russo, E., Bonali, F.L., Alania, V., Chabukiani, A., Enukidze, O., and Tsereteli, N., 3-D anatomy of an active fault-propagation fold: A multidisciplinary case study from Tsaishi, Western Caucasus (Georgia), Tectonophysics, 2017b, vol. 717, pp. 253–269. https://doi.org/10.1016/j.tecto.2017.08.006

    Article  Google Scholar 

  38. Tibaldi, A., Tsereteli, N., Varazanashvili, O., Babayev, G., Barth, A., Mumladze, T., Bonali, F.L., Russo, E., Kadirov, F., Yetirmishli, G., and Kazimova, S., Active stress field and fault kinematics of the Greater Caucasus, J. Asian Earth Sci., 2020, vol. 188, pp. 104–108. https://doi.org/10.1016/j.jseaes.2019.104108

    Article  Google Scholar 

Download references

Funding

The study was carried out under state contract no. 0144-2019-0011 for the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Burmin.

Ethics declarations

The authors declare no conflict of interests.

Additional information

Translated by N. Astafiev

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazaryan, K.S., Burmin, V.Y. & Sargsyan, R.S. Stress–Strain State of the Earth’s Crust in the Central Caucasus. Seism. Instr. 57, 115–125 (2021). https://doi.org/10.3103/S0747923921020250

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923921020250

Keywords:

Navigation