Skip to main content
Log in

A Method for Quantifying Static Shift Distortions Using a Magnetic Field of Controlled Source (CSAMT)

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

Static distortions are known abroad by the term “static shift distortions.” They have a strong influence on the results of deep electromagnetic soundings made with both natural (AMT-MTS) and controlled (CSAMT) sources. The main cause of static shift distortions is the local inhomogeneities of the upper half-space in comparison with the electromagnetic wavelength in the ground. Static shift distortions are frequency-independent and manifest themselves in a parallel shift of the apparent resistivity curves relative to the resistance scale. The shape of the apparent resistivity curves containing information on the section of the model is preserved, but the ideas about the depths of the layer locations and their conductance values change. Currently, many methods have been developed for quantifying static shift distortions, but they all have a quality, phenomenological character. This work proposes a quantitative method for the correction of static shift distortions. It is based on the use of the apparent resistivity curve of a controlled source, normalized to the value of the total horizontal magnetic field. The use of magnetic measurements with induction coils that do not have a galvanic connection with the ground allows quantifying static shift distortions by comparing the magnetic field with apparent resistivity curves normalized to the total electric field or the total input impedance value. The proposed method is applicable only for frequency soundings with controlled sources CSAMT. Nevertheless, it allows one to correct the MTS and AMTS curves measured at the same installation and using the same sensors in the low-frequency region, outside the wave zone, where the CSAMT method loses its sounding functions. The results of the experimental works that justify the applicability of the new method by the example of controlled-source soundings are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Barannik, M.B., Danilin, A.N., Efimov, B.V., Kolobov, V.V., Prokopchuk, P.I., Selivanov, V.N., Shevtsov, A.N., Kopytenko, Yu.A., and Zhamaletdinov, A.A., High-voltage power inverter of the generator “Energy-2” for electromagnetic soundings and monitoring of the earthquake source zones, Seism. Instrum., 2010a, vol. 46, no. 1, pp. 49–61.

    Article  Google Scholar 

  2. Barannik, M.B., Danilin, A.N., Efimov, B.V., Kolobov, V.V., Prokopchuk, P.I., Selivanov, V.N., Kopytenko, Yu.A., and Zhamaletdinov, A.A., High-voltage rectifier of the Energy-2 generator for electromagnetic sounding and monitoring of earthquake source zones, Seism. Instrum., 2010b, vol. 46, no. 3, pp. 207–212.

    Article  Google Scholar 

  3. Berdichevskii, M.N., Elektricheskaya razvedka metodom magnitotelluricheskogo profilirovaniya (Electrical Survey Using the Method of Magnetotelluric Profiling), Moscow: Nedra, 1968.

  4. Caldwell, T.G., Bibby, H.M., and Brown, C., The magnetotelluric phase tensor, Geophys. J. Int., 2004, vol. 158, no. 2, pp. 457–469. https://doi.org/10.1111/j.1365-246X.2004.02281.x

    Article  Google Scholar 

  5. Feldman, I.S., Okulessky, B.A., Ingerov, A.I., Solodilov, L.N., Egorkin, A.V., Kadurin, I.N., Konovalov, Y.F., Shempelev, A.G., and Trofimenko, E.A., Magnetotelluric and seismic study of the Earth crust and upper Mantle in the Caucasus region, in Proceedings of the 12th Workshop “Induction electromagnetique dans la terre,” Brest, France, 1994, Brest: Univ. Bretagne, 1994, p. 65.

  6. Groom, R.W. and Bailey, R.C., Decomposition of magnetotelluric impedance tensors in the presence of local tree-dimensional galvanic distortion, J. Geophys. Res., [Solid Earth Planets], 1989, vol. 94, no. B2, pp. 1913–1925.

  7. Groot-Hedlin, C. and Constable, S., Occam’s inversion to generate smooth, two-dimensional models from magnetotelluric data, Geophysics, 1990, vol. 55, no. 12, pp. 1613–1624.

    Article  Google Scholar 

  8. Jones, A.G., Static shift of magnetotelluric data and its removal in a sedimentary basin environment, Geophysics, 1988, vol. 53, no. 7, pp. 967–978.

    Article  Google Scholar 

  9. Kolobov, V.V., Kuklin, D.V., Shevtsov, A.N., and Zhamaletdinov, A.A., The KVVN-7 multifunction digital measuring station for electromagnetic monitoring of seismoactive zones, Seism. Instrum., 2012, vol. 48, no. 1, pp. 75–84.

    Article  Google Scholar 

  10. Kolobov, V.V., Barannik, M.B., Efimov, B.V., Zhamaletdinov, A.A., Shevtsov, A.N., and Kopytenko, Yu.A., Energy‑4 generator for monitoring seismically active regions and electromagnetic sounding of the Earth’s crust. Experience of application in the Kovdor-2015 experiment, Seism. Instrum., 2018a, vol. 53, no. 3, pp. 268–280. https://doi.org/10.3103/S0747923918030143

    Article  Google Scholar 

  11. Kolobov, V.V., Barannik, M.B., Ivonin, V.V., Selivanov, V.N., Zhamaletdinov, A.A., Shevtsov, A.N., and Skorokhodov, A.A., Application of the Energiya-4 generator for remote and frequency electromagnetic soundings in the framework of the Murman-2018 experiment, Tr. Kol’sk. Nauchn. Tssentra Ross. Akad. Nauk. Energ., 2018b, no. 17, pp. 7–20. https://doi.org/10.25702/KSC.2307-5252.2018.9.8.7-20

  12. Rokityanskii, I.I., Deep magnetotelluric sounding in the presence of distortions from horizontal inhomogeneities, in vol. 43 of Geofiz. Sb., Kiev: Naukova dumka, 1971, pp. 71–78.

  13. Shevtsov, A.N., Some ways of normalization and transformation of the electromagnetic sounding results, in Glubinnye geoelektricheskie issledovaniya s ispol’zovaniem promyshlennykh linii elektroperedach (Deep Electrical Sounding Studies Employing Industrial Power Lines), Apatity: Kol’sk. Nauchn. Tssentra Akad. Nauk. SSSR, 1990, pp. 90–95.

  14. Van’yan, L.L., Osnovy elektromagnitnykh zondirovanii (Fundamentals of Electromagnetic Soundings), Moscow: Nedra, 1965.

  15. Veshev, A.V., Elektroprofilirovanie na postoyannom i peremennom toke (Electrical Profiling Using Direct and Alternating Currents), Leningrad: Nedra, 1980.

  16. Zhamaletdinov, A.A., Model’ elektroprovodnosti litosfery po rezul’tatam issledovanii s kontroliruemymi istochnikami polya (Baltiiskii shchit, Russkaya platforma) (The Model of Lithosphere Electrical Conductivity Inferred from the Controlled-Source Studies: Case Study of the Baltic Shield, East European Platform), Leningrad: Nauka, 1990.

  17. Zhamaletdinov, A.A., Teoriya i metodika glubinnykh elektromagnitnykh zondirovanii s moshchnymi kontroliruemymi istochnikami (opyt kriticheskogo analiza) (Theory and Methods of Deep Electromagnetic Sounding Using Powerful Controlled Sources: A Critical Analysis), St. Petersburg: Sankt-Peterb. Gos. Univ., 2012.

  18. Zhamaletdinov, A.A. and Shevtsov, A.N., On the concept of a wave zone in ELF–ULF-range deep soundings, in Vzaimodeistvie elektromagnitnykh polei KNCh-SNCh diapazona s ionosferoi i zemnoi koroi: Materialy I Vserossiiskogo (s mezhdunarodnym uchastiem) nauchno-prakticheskogo seminara (Interaction of ELF–ULF Electromagnetic Fields with the Earth’s Ionosphere and Crust: Proceedings of the All-Russian Science-and-Practice Workshop with Foreign Participants), Velikhov, E.P., Ed., Apatity, 2015, pp. 25–32.

  19. Zhamaletdinov, A.A., Shevtsov, A.N., Velikhov, E.P., Skorokhodov, A.A., Kolesnikov, V.E., Korotkova, T.G., Ryazantsev, P.A., Efimov, B.V., Kolobov, V.V., Barannik, M.B., Prokopchuk, P.I., Selivanov, V.N., Kopytenko, Yu.A., Kopytenko, E.A., Ismagilov, V.S., et al., Study of interaction of ELF–ULF range (0.1–200 Hz) electromagnetic waves with the earth’s crust and the ionosphere in the field of industrial power transmission lines (FENICS experiment), Izv., Atmos. Oceanic Phys., 2015, vol. 51, no. 8, pp. 826–857.

    Article  Google Scholar 

  20. Zhamaletdinov, A.A., Velikhov, E.P., Shevtsov, A.N., Kolobov, V.V., Kolesnikov, V.E., Skorokhodov, A.A., Korotkova, T.G., Ivonin, V.V., Ryazantsev, P.A., and Birulya, M.A., The Kovdor-2015 experiment: Study of the parameters of a conductive layer of dilatancy–diffusion nature (DD Layer) in the Archaean crystalline basement of the Baltic Shield, Dokl. Earth Sci., 2017, vol. 474, pp. 641–645. https://doi.org/10.1134/S1028334X17060095

    Article  Google Scholar 

  21. Zhdanov, M.S., Elektrorazvedka (Electrical Survey), Moscow: Nedra, 1986.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to his colleagues, coauthors of primary publications listed in the References A.N. Shevtsov, A.A. Skorokhodov, and T.G. Korotkova for their participation in the field works and processing of the materials. He especially appreciates the anonymous reviewers for the valuable comments and corrections to the text that were taken into consideration thankfully.

Funding

This work was supported by the Russian Foundation for Basic Research, grant no. 18-05-00528 and was performed under the state task of the Ministry of Education and Science of the Russian Federation on the subject of the Geological Institute “Kola Science Center of the Russian Academy of Sciences” no. 0226-2019-0052.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zhamaletdinov.

Ethics declarations

The author declares no conflict of interest.

Additional information

Translated by L. Mukhortova

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhamaletdinov, A.A. A Method for Quantifying Static Shift Distortions Using a Magnetic Field of Controlled Source (CSAMT). Seism. Instr. 56, 555–563 (2020). https://doi.org/10.3103/S0747923920050138

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920050138

Keywords:

Navigation