Skip to main content
Log in

ATLANTIDA3.1_2017 Program: Calculation of Tidal Deformations

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A methodology for calculating tidal deformations for the Earth with and without an ocean is described. This methodology has been applied to calculate deformations in the latest version of the tidal parameter prediction program ATLANTIDA3.1_2017. The results are compared with studies by other authors and with observational data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Amoruso, A. and Crescentini, L., The geodetic laser interferometers at Gran Sasso, Italy: Recent modifications and correction for local effects, J. Geodyn., 2009, vol. 48, pp. 120–125. https://doi.org/10.1016/j.jog.2009.09.025

    Article  Google Scholar 

  2. Amoruso, A. and Crescentini, L., Limits on earthquake nucleation and other seismic phenomena from continuous strain in the near field of the 2009 L’Aquila earthquake, Geophys. Res. Lett., 2010, vol. 37. https://doi.org/10.1029/2010GL043308

    Article  Google Scholar 

  3. Agnew, D., Earth tides, in Treatise on Geophysics and Geodesy, Herring, T.A., Ed., New York: Elsevier, 2007, pp. 163–195.

    Google Scholar 

  4. Botta, V., High-sensitivity strain measurements from underground interferometric stations: geodynamic phenomena at Gran Sasso and first records from Canfranc, PhD Thesis, Salerno, Italy.

  5. Carrère, L., Lyard, F., Cancet, M., Guillot, A., and Roblou, L., FES2012: A new global tidal model taking taking advantage of nearly 20 years of altimetry, Proceedings of Meeting “20 Years of Altimetry,” Venice, Italy, 2012.

  6. Crescentini, L. and Renzella, G., A wide-band high-sensitivity laser strainmeter, Rev. Sci. Instrum., 1991, vol. 62, pp. 1206–1209.

    Article  Google Scholar 

  7. Crescentini, L., Amoruso, A., Fiocco, G., and Visconti, G., Installation of a high-sensitivity laser strainmeter in a tunnel in central Italy, Rev. Sci. Instrum., 1997, vol. 68, pp. 3206–3210.

    Article  Google Scholar 

  8. Matsumoto, K., Sato, T., Takanezawa, T., and Ooe, M., GOTIC2: A program for computation of oceanic tidal loading effect, J. Geod. Soc. Jpn., 2001, vol. 47, no. 1, pp. 243–248. https://doi.org/10.11366/sokuchi1954.47.243

    Article  Google Scholar 

  9. McCarthy, D.D., IERS Conventions (1992), IERS Technical Note 21, Paris: Int. Earth Rotation Serv., 1996.

    Google Scholar 

  10. Milyukov, V.K. and Myasnikov, A.V., Metrological characteristics of the Baksan laser interferometer, Meas. Tech., 2005, vol. 48, no. 12, pp. 1183–1190. https://doi.org/10.1007/s11018-006-0042-7

    Article  Google Scholar 

  11. Milyukov, V.K., Klyachko, B.S., Myasnikov, A.V., Striganov, P.S., Yanin, A.F., and Vlasov, A.N., A laser interferometer-deformograph for monitoring the crust movement, Instrum. Exp. Tech., 2005, vol. 48, no. 6, pp. 780–795. https://doi.org/10.1007/s10786-005-0140-9

    Article  Google Scholar 

  12. Milyukov, V.K., Amoruso, A., Crescentini, L., Mironov, A.P., Myasnikov, A.V., and Lagutkina, A.V., Oceanic loading and local distortions at the Baksan, Russia, and Gran Sasso, Italy, strain stations, Izv.,Phys. Solid Earth, 2018, vol. 54, no. 2, pp. 336–348. https://doi.org/10.1134/S1069351318020131

    Article  Google Scholar 

  13. Petit, G. and Luzum, B., IERS Conventions, IERS Technical Note 36, Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie, 2010.

    Google Scholar 

  14. Spiridonov, E.A., ATLANTIDA 3.1_2014 software for analysis of earth tides data, Nauka Tekhnol. Razrab., 2014, vol. 93, no. 3, pp. 3–48.

    Google Scholar 

  15. Spiridonov, E.A., Results of comparison of predicted Earth tidal parameters and observational data, Seism. Instrum., 2016a, vol. 52, no. 1, pp. 60–69.

    Article  Google Scholar 

  16. Spiridonov, E.A., How dissipation and selection of the Earth model on the quality of the Earth tidal prediction, Seism. Instrum., 2016b, vol. 52, no. 3, pp. 224–232.

    Article  Google Scholar 

  17. Spiridonov, E.A., Corrections to the Love numbers for the relative and Coriolis accelerations and their latitude dependence, Geofiz.Protsessy Biosfera, 2016c, vol. 15, no. 1, pp. 73–81.

    Google Scholar 

  18. Spiridonov, E.A., Latitude dependence of amplitude factor δ for degree 2 tides, Russ. Geol. Geophys., 2016d, vol. 57, no. 4, pp. 629–636. https://doi.org/10.1016/j.rgg.2015.08.013

    Article  Google Scholar 

  19. Spiridonov, E.A., Amplitude factors δ and phase shifts of tidal waves for the models of the Earth with ocean, Geofiz.Protsessy Biosfera, 2017, vol. 16, no. 2, pp. 5–54. https://doi.org/10.21455/GPB2017.2-1

    Article  Google Scholar 

  20. Spiridonov, E.A., Tidal Love numebrs of degrees 2 and 3, Izv.,Atmos. Ocenaic Phys., 2018, vol. 54, no. 9, pp. 911–931. https://doi.org/10.1134/S0001433818080133

    Article  Google Scholar 

  21. Spiridonov, E.A. and Vinogradova, O.Yu., The results of integrated modeling of the oceanic gravimetric effect, Seism. Instrum., 2018, vol. 54, no. 1, pp. 43–53. https://doi.org/10.3103/S0747923918010097

    Article  Google Scholar 

  22. Spiridonov, E.A. and Vinogradova, O.Yu., Calculation of tidal displacements and tilts for inelastic rotating Earth, Geofiz.Protsessy Biosfera, 2019, vol. 18, no. 1, pp. 61–73. https://doi.org/10.21455/gpb2019.1-6

    Article  Google Scholar 

  23. Spiridonov, E.A., Yushkin, V.D., Vinogradova, O.Yu., and Afanas’eva, L.V., The Atlantida 3.1_2014 program for earth tide prediction: New version, Sesim. Instrum., 2018, vol. 54, no. 6, pp. 650-661. https://doi.org/10.3103/S0747923918060129

    Article  Google Scholar 

  24. Tamura, Y., A harmonic development of the tide generating potential, Bull. Inf. Mar. Terr., 1987, no. 99, pp. 6813–6855.

  25. Venedikov, A.P., Arnoso, J., and Vieira, R., VAV: A program for tidal data processing, Comput. Geosci., 2003, vol. 29, pp. 487–502.

    Article  Google Scholar 

  26. Vinogradova, O.Yu. and Spiridonov, E.A., Comparison of two methods for calculating tidal loads, Izv.,Phys. Solid Earth, 2013, vol. 49, no. 1, pp. 83–92. https://doi.org/10.1134/S1069351313010163

    Article  Google Scholar 

  27. Wenzel, H.G., The Nanogal software: Earth tide data processing package Eterna3.30, Bull. Inf. Mar. Terr., 1996, vol. 124, pp. 9425–9439.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Sternberg State Astronomical Institute (Moscow State University) for the materials provided.

Funding

The study was carried out under the auspices of the Schmidt Institute of Physics of the Earth, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Spiridonov.

Ethics declarations

The authors declare they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiridonov, E.A., Myasnikov, A.V. & Vinogradova, O.Y. ATLANTIDA3.1_2017 Program: Calculation of Tidal Deformations. Seism. Instr. 56, 1–16 (2020). https://doi.org/10.3103/S0747923920010119

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923920010119

Keywords:

Navigation