Advertisement

Seismic Instruments

, Volume 55, Issue 4, pp 464–485 | Cite as

Methods for Assessing the Seismic Hazard of Stable Continental Areas Using Combined Paleoseismological and Geophysical Data

  • O. O. ErtelevaEmail author
  • A. Ya. Sidorin
  • E. Yu. Sokolova
  • A. A. Lukk
  • A. A. Nikonov
  • F. F. Aptikaev
  • S. V. Shvarev
Article

Abstract

Assessing the seismic hazard of stable continental areas, where modern seismic activity is insignificant, is a complex task that needs to be solved in order to ensure the safety of people and buildings in these territories. Traditional methods, including seismotectonic research, seismological monitoring, identification of seismic source zones (SSZs), and subsequent hazard assessment, are ineffective in such areas due to the lack of representative earthquake statistics and low informativeness of the data. In the seismic zoning of such areas (especially for solving seismic safety problems for critical objects, such as nuclear power plants), one cannot limit oneself to modern seismicity data: it is necessary to take into account rare seismic events, i.e., earthquakes with a large recurrence period. The joint study of active faults, earthquakes of historical record, and paleoearthquakes can significantly extend the time range of a strong-earthquake catalog and make it possible to identify new, previously unidentified SSZs. To assess the seismic hazard of territories in stable continental regions, the authors of this article propose using paleoseismological data together with the results of seismological and geophysical studies, which makes it possible to combine paleoearthquake and modern seismicity data. seismic observations are analyzed to obtain additional information on the stress–strain state of the study area and determine the earthquake focal mechanisms of identified SSZs. The results of geophysical studies make it possible to judge the existence of ancient but still “nonconsolidated” faults in SSZs, which may, in tandem with other research methods, indirectly confirm their correct identification as active. In the article, this approach is used to assess the seismic hazard of Karelia and the Kola Peninsula. The seismic impacts parameters of events with a long recurrence period are evaluated for individual objects and populated areas of this region.

Keywords:

seismicity seismic hazard paleoearthquakes stable continental regions Karelia Kola Peninsula seismic impacts intensity magnitude focal mechanism magnetotelluric and magnetovariational sounding geoelectric structure 

Notes

ACKNOWLEDGMENTS

The authors are grateful to KB GS RAS for providing the regional earthquake catalog; to S.B. Nikolaeva, M.V. Rodkin, and A.O. Koroleva for field studies; and to L.D. Fleifel for technical assistance.

FUNDING

The study was carried out according to the state task of IPE RAS with the support of the Russian Foundation for Basic Research (project no. 16-05-00543).

REFERENCES

  1. 1.
    Ahjos, T. and Uski, M., Earthquakes in northern Europe in 1375–1989, Tectonophysics, 1992, vol. 207, pp. 1–23.CrossRefGoogle Scholar
  2. 2.
    Amantov, A.V., Geology of pre-Quaternaary rocks and tectonics of the Ladoga region, Reg. Geol. Metallog., 2014, no. 58, pp. 22–32.Google Scholar
  3. 3.
    Aptikaev, F.F., Instrumental’naya shkala seismicheskoi intensivnosti (Instrumental Scale of Seismic Intensity), Moscow: Nauka i obrazovanie, 2012.Google Scholar
  4. 4.
    Arakelyan, F.O., Zubko Yu.N., and Levchenko D.G., Development and operation experience of a seismic warning system for a nuclear power plant, Seism. Instrum., 2018, vol. 54, no. 3, pp. 247–253.  https://doi.org/10.3103/S0747923918030039 CrossRefGoogle Scholar
  5. 5.
    Assinovskaya, B.A. and Nikonov, A.A., Enigmatic phenomena on Lake Ladoga, Priroda, 1998, no. 5, pp. 49–53.Google Scholar
  6. 6.
    Assinovskaya, B.A. and Nikonov, A.A., Seismicity of Karelian region, in Glubinnoe stroenie i seismichnost’ Karelii (Deep Structure and Seismicity of Karelia), Sharov, N.V., Ed., Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2004, pp. 192–237.Google Scholar
  7. 7.
    Assinovskaya, B.A., Gabsatarova, I.P., Panas, N.M., and Uski, M., Seismic events in 2014–2016 around the Karelian Isthmus and their nature, Seism. Instrum., 2019, vol. 54, no. 1, pp. 40–61.  https://doi.org/10.3103/S074792391901002X Google Scholar
  8. 8.
    Atlas Murmanskoi oblasti (Atlas of Murmansk Oblast), Moscow: GUGK, 1971.Google Scholar
  9. 9.
    Avenarius, I.G., Morphostructural analysis of the zone of recent dislocations on the southern slope of Khibiny Mountains, Geomorfologiya, 1989, no. 2, pp. 52–56.Google Scholar
  10. 10.
    Baltybaev, Sh.K., Levchenkov, O.A., and Levskii, L.K., Svekofennskii poyas Fennoskandii: prostranstvenno-vremennaya korrelyatsiya ranneproterozoiskikh endogennykh protsessov (The Svecofennian Belt of Fennoscandia: Spatiotemporal Correlation of Early Proterozoic Endogenous Processes), St. Petersburg: Nauka, 2009.Google Scholar
  11. 11.
    Baranov, S.V., Vinogradov, A.N., Nikolaeva, S.B., and Petrov, S.I., Seismicity of the Kola Peninsula based on instrumental data, Sovremennye metody obrabotki i interpretatsii seismicheskikh dannykh. Materialy Shestoi Mezhdunarodnoi seismologicheskoi shkoly (Modern Methods of Seismic Data Processing and Interpretation: Proceedings of the Sixth International Workshop), Apatity, Russia, 2011, Obninsk: Geofiz. Sluzhba Ross. Akad. Nauk, 2011, pp. 47–51.Google Scholar
  12. 12.
    Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., EUROPE|East European Craton, in Reference Module in Earth Systems and Environmental Sciences, Amsterdam: Elsevier, 2016, pp. 34–49.  https://doi.org/10.1016/B978-0-12-409548-9.10020-X Google Scholar
  13. 13.
    Bugaev, E.G., Specifying seismic conditions of the Kola NPP site, Glubinnoe stroenie i geodinamika Fennoskandii, okrainnykh i vnutriplatformennykh tranzitnykh zon. Materialy Vos’moi mezhdunarodnoi konferentsii (Deep Structure and Geodynamics of Fennoscandia, Marginal and Intraplatform Transit Zones: Proceedings of the Eighth International Conference), Petrozavodsk, Russia, 2002, Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2002, pp. 34–35.Google Scholar
  14. 14.
    Erteleva, O.O., Aptikaev, F.F., Barua, Saurab, Barua, Santanu, Bisvas, R., Kalita, A., Deb, S., and Kaial, Dzh.R., Prediction of strong ground motion parameters for the Shillong Plateau and adjacent areas (Northeast India), Vopr. Inzh. Seismol., 2011, vol. 38, no. 3, pp. 5–21.Google Scholar
  15. 15.
    Erteleva, O.O. and Nikonov, A.A., New assessment of seismic effects for the territory of St. Petersburg city, Analiz, prognoz i upravlenie prirodnymi riskami s uchetom global’nogo izmeneniya climata - GEORISK-2018. Materialy X Mezhdunarodnoi nauchno-prakticheskoi konferentsii po problemam snizheniya prirodnykh opasnostei i riskov (Analysis, Prediction, and Management of Natural Risks Taking into Account Global Climate Changes - GEORISK-2018: Proceedings of the X International Research-and-Practice Conference on Alleviation of Natural Hazards and Risks), Moscow, 2018, Moscow: Ross. Univ. Druzhby Nar., 2018, vol. 1, pp. 231–236.Google Scholar
  16. 16.
    Evzerov, V.Ya. and Nikolaeva, S.B., Seismotectonic consequences of Quaternary glacial sheets in Kola region, Geomorfologiya, 2003, no. 2, pp. 61–64.Google Scholar
  17. 17.
    Finnish Reflection Experiment FIRE 2001–2005, vol. 43 of Geol. Surv. Finland, Spec. Pap., Kukkonen, I.T. and Lahtinen, R., Eds., 2006.Google Scholar
  18. 18.
    Geologicheskaya karta Kol’skogo regiona (severo-vostochnaya chast’ Baltiiskogo shchita) masshtaba 1 : 500 000 (Geological Map of Kola region (Northeastern Baltic Shield), Scale 1 : 500 000), Mitrofanov, F.P., Ed., Apatity: Geol. Inst. Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 1996.Google Scholar
  19. 19.
    Glaznev, V.N., Zhirov, D.V., and Zhirova, A.M., Interpretation of the junction zone between the Khibiny massif and Imandra–Varzuga belt from geological-geophysical data and 3D seismic-and-density modeling, Trudy Vserossiiskoi (s mezhdunarodnym uchastiem) nauchnoi konferentsii “Kompleksnye geologo-geofizicheskie modeli drevnikh shchitov” (Comprehensive Geological-Geophysical Models of Ancient Shields: Proceedings of the All-Russia (with Foreign Participants) Scientific Conference), Apatity, Russia, 2009, Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2009, pp. 22–27.Google Scholar
  20. 20.
    Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of Karelian Region and Its Framing), Sharov, N.V., Ed., Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2004.Google Scholar
  21. 21.
    Godzikovskaya, A.A., Asming, V.E., and Vinogradov, Yu.A., Retrospektivnyi analiz pervichnykh materialov po seismichnosti Kol’skogo poluostrova i prilegayushchikh territorii v XX veke (Retrospective Analysis of Primary Data on Seismicity of the Kola Peninsula and Adjacent Areas in the 20th Century), Moscow: Geofiz. Sluzhba Ross. Akad. Nauk, 2010.Google Scholar
  22. 22.
    GOST (State Standard) R 57546: Earthquakes, Seismic Intensity Scale, 2017.Google Scholar
  23. 23.
    Grutzner, C., Carson, E., Walker, R.T., Rhodes, E.J., Mukambayev, A., Mackenzie, D., Elliott, J.R., Campbell, G., and Abdrakhmatov, K., Assessing the activity of faults in continental interiors: Palaeoseismic insights from SE Kazakhstan, Earth Planet. Sci. Lett., 2017, vol. 459, no. 1, pp. 93–104.  https://doi.org/10.1016/j.epsl.2016.11.025 CrossRefGoogle Scholar
  24. 24.
    Hjelt, S.E., Korja, T., Kozlovskaya, E., Lahti, I., and Yliniemi, J., BEAR and SVEKALAPKO Seismic Tomography Working Group, in European Lithosphere Dynamics, vol. 32 of Geol. Soc. London, Mem., Gee, D.G. and Stephenson, R.A., Eds., London, 2006, pp. 541–559.  https://doi.org/10.1144/GSL.MEM.2006.032.01.33
  25. 25.
    Kalashnik, A.I. and Maksimov, D.A., Approaches to seismic risk assessment of surface linear elongated objects and zoning of the Kola Peninsula, Vestn. Kol’sk. Nauchn. Tsentra Ross. Akad. Nauk, 2016, no. 2, pp. 44–51.Google Scholar
  26. 26.
    Karpov, N.N., Traces of post-glacial tectonic faults in Khibiny Mountains, Vestn. Mosk. Gos. Univ. Ser. 7: Geogr., 1960, no. 4, p. 61.Google Scholar
  27. 27.
    Korja, A., Lahtinen, R., and Nironen, M., The Svecofennian orogen: A collage of microcontinents and island arcs, in European Lithosphere Dynamics, vol. 32 of Geol. Soc. London, Mem., Gee, D.G. and Stephenson, R.A., Eds., London, 2006, pp. 561–578. Google Scholar
  28. 28.
    Kosnyreva, M.V. and Zolotaya, L.A., Interpretation of potential fields in the Ladoga zone of anomalous electrical conductivity, Engineering and Mining Geophysics 2018, EAGE, 2018.  https://doi.org/10.3997/2214-4609.201800579 Google Scholar
  29. 29.
    Kulakovskii, A.L., Morozov, Yu.A., and Smul’skaya, A.I., Stress-metamorphism and stress-metamorphites in the Precambrian of Near-Ladoga region, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2015, no. 7, pp. 19–35.  https://doi.org/10.17076/geo159
  30. 30.
    Leonard, M. and Clark, D., A record of stable continental region earthquakes from Western Australia spanning the late Pleistocene: Insights for contemporary seismicity, Earth Planet. Sci. Lett., 2011, vol. 309, nos. 3–4, pp. 207–212.  https://doi.org/10.1016/j.epsl.2011.06.035 CrossRefGoogle Scholar
  31. 31.
    Lukashov, A.D., Recent geodynamics, in Glubinnoe stroenie i seismichnost’ Karel’skogo regiona i ego obramleniya (Deep Structure and Seismicity of Karelian Region and Its Framing), Sharov, N.V., Ed., Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2004, pp. 150–191.Google Scholar
  32. 32.
    Mints, M.V., Geodynamic interpretation of the 3D model of deep structure of the Svecofennian accretionary orogen, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Geol. Dokembriya, 2018, no. 2, pp. 62–76.  https://doi.org/10.17076/geo656
  33. 33.
    Mints, M.V., Sokolova, E.Yu., and LADOGA Work Group, 3D model of deep structure of the Svecofennian accretionary orogen based on the CDP seismic reflection, MT sounding, and density modeling data, Tr. Karel. Nauchn. Tsentra Ross. Akad. Nauk, Ser. Geol. Dokembriya, 2018, no. 2, pp. 34–61.  https://doi.org/10.17076/geo656
  34. 34.
    Mints, M.V., Suleimanov, A.K., Zamozhniaya, N.G., and Stupak, V.M., Study of the basement of the Russian European Platform based on a system of geotraverses and CMP profiles: 3D models of the Early Precambrian crust in key regions, in East European Craton: Early Precambrian History and 3D Models of Deep Crustal Structure, vol. 510 of Geol. Soc. Am., Spec. Pap., 2015 https://doi.org/10.1130/2015.2510(12)
  35. 35.
    Mitrofanov, F.P., Crustal evolution, geodynamics, and metallogeny of Kola region (Baltic Shield), Svyaz’ poverkhnostnykh struktur zemnoi kory s glubinnymi: Materialy chetyrnadtsatoi mezhdunarodnoi konferentsii (Relationship between Surface and Deep Structures of the Earth’s Crust), Petrozavodsk, 2008, Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2008, vol. 2, pp. 53–57.Google Scholar
  36. 36.
    Morozov, A.N., Vaganova, N.V., Konechnaya, Ya.V., As-ming, V.E., Nikonov, A.A., Sharov, N.V., Fedorenko, I.V., Mikhailova, Ya.A., and Evtyugina, Z.A., Modern seismicity of White Sea region, Rezul’taty kompleksnogo izucheniya sil’neishego Altaiskogo (Chuiskogo) zemletryaseniya 2003 g. Materialy XXI Nauchno-prakticheskoi Shchukinskoi konferentsii s mezhdunarodnym uchastiem (Results of Comprehensive Studies of the 2003 Altai (Chuya) Strongest Earthquake: Proceedings of the XXI Research-and-Practice Shchukin Conference with International Participants), Moscow, 2018, Moscow: Inst. Fiz. Zemli Ross. Akad. Nauk, 2018, pp. 233–237.Google Scholar
  37. 37.
    Nikitin, M.Yu., Travertinogenesis of the Izhora Plateau in the Holocene, Cand. Sci. (Geol.-Mineral.) Dissertation, St. Petersburg: Sankt-Peterb. Gos. Univ., 2015.Google Scholar
  38. 38.
    Nikolaev, N.I., Neotectonics and seismicity of the East European Platform, Izv. Akad. Nauk SSSR. Ser. Geogr., 1967, no. 2, pp. 13–27.Google Scholar
  39. 39.
    Nikolaeva, S.B., Paleoseismodislocations in the southern part of Kola Peninsula, in Chetvertichnye otlozheniya i noveishaya tektonika lednikovykh oblastei Vostochnoi Evropy (Quaternary Deposits and Recent Tectonics of Glacial Areas of East Europe), Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 1993, pp. 69—81.Google Scholar
  40. 40.
    Nikolaeva, S.B., Paleoearthquake manifestations in the northeastern Baltic Shield and their geological-tectonic positions, Geomorfologiya, 2001, no. 4, pp. 66–74.Google Scholar
  41. 41.
    Nikolaeva, S.B., Epicentral zones of paleoearthquakes in Kola region, Glubinnoe stroenie i geodinamika Fennoskandii, okrainnykh i vnutriplatformennykh tranzitnykh zon. Materialy Vos’moi mezhdunarodnoi konferentsii (Deep Structure and Geodynamics of Fennoscandia, Marginal and Intraplatform Transit Zones: Proceedings of the Eighth International Conference), Petrozavodsk, Russia, 2002, Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2002, pp. 175–176.Google Scholar
  42. 42.
    Nikolaeva, S.B., Paleoseismodislocations in the Khibiny massif (northeastern Baltic Shield, Kola Peninsula), Napryazhenno-deformirovannoe sostoyanie i seismichnost’ litosfery. Trudy Vserossiiskogo Soveshchaniya (Stress-Strain State and Seismicity of the Lithosphere: Proceedings of the All-Russia Meeting), Irkutsk, Russia, 2003, Novosibirsk: Sib. Otd. Ross. Akad. Nauk, 2003, pp. 409–412.Google Scholar
  43. 43.
    Nikolaeva, S.B., Disastrous earthquakes in the vicinities of the town of Murmansk: Paleoseismological and geological evidence, J. Volcanol. Seismol., 2008, vol. 2, no. 3, pp. 189–198.CrossRefGoogle Scholar
  44. 44.
    Nikolaeva, S.B., On the leshii path, Priroda, 2012, no. 7, pp. 26–32.Google Scholar
  45. 45.
    Nikolaeva, S.B., Nikonov, A.A., and Shvarev, S.V., Detailed paleoseismogeological studies at the key site in the side zone of the Lake Imandra Basin (European Polar region): New approaches and results, in Geologiya i paleogeografiya polyarnykh raionov (Geology and Paleogeography of Polar Regions), St. Petersburg, 2012, pp. 151–163.Google Scholar
  46. 46.
    Nikolaeva, S.B., Lavrova, N.B., Denisov, D.B., and Tolstobrov, D.S., Traces of catastrophic processes in bottom lacustrine sediments on the western coast of Lake Babinskaya Imandra (Kola region), Izv. Russ. Geogr. O-va, 2016a, vol. 148, no. 4, pp. 38–52.Google Scholar
  47. 47.
    Nikolaeva, S.B., Nikonov, A.A., Shvarev, S.V., and Rodkin, M.V., Comprehensive paleoseismic geological studies in a key site in southwestern Kola Peninsula (Northeast of the Fennoscandian Shield), Dokl. Earth Sci., 2016b, vol. 469, no. 1, pp. 656–660.CrossRefGoogle Scholar
  48. 48.
    Nikolaeva, S.B., Lavrova, N.B., and Denisov, D.B., A catastrophic holocene event in the lake bottom sediments of the Kola region (northeastern Fennoscandian shield), Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 308–312.CrossRefGoogle Scholar
  49. 49.
    Nikolaeva, S.B., Nikonov, A.A., Shvarev, S.V., and Rodkin, M.V., Detailed paleoseismological research on the flank of the Lake Imandra depression (Kola region): New approaches and results, Russ. Geol. Geophys., 2018, vol. 59, no. 6, pp. 697–708.   https://doi.org/10.1016/j.rgg.2018.05.008 CrossRefGoogle Scholar
  50. 50.
    Nikonov, A.A., Macroseismic characteristic of the 20th century earthquakes in the eastern Baltic Shield, Belorus. Seismol. Byull., 1992, no. 2, pp. 96–144.Google Scholar
  51. 51.
    Nikonov, A.A., The problem of seismic phenomena in Finland–Ladoga (Petersburg) region in the light of geomorphology and Quaternary geology, Glavneishie itogi v izuchenii chetvertichnogo perioda i osnovnye napravleniya issledovanii v XXI veke: Tezisy dokladov Vserossiiskogo Soveshchaniya (The Main Results in Quaternary Research and Main Research Fields in the 21st Century: Abstracts of the All-Russia Meeting), St. Petersburg, Russia, St. Petersburg: VSEGEI, 1998, p. 325.Google Scholar
  52. 52.
    Nikonov, A.A., Earthquakes and paleoearthquakes in the southeastern Baltic Sheild, Geodinamika i geoekologiya. Materialy Mezhdunarodnoi konferentsii (Geodynamics and Geoecology: Proceedings of the International Conference), Arkhangelsk, 1999, Arkhangelsk: Inst. Ekol. Probl. Severa Ural. Otd. Ross. Akad. Nauk, 1999, p. 270.Google Scholar
  53. 53.
    Nikonov, A.A., Earthquakes in the north of the European part of Russia: The new version of the catalog on the basis of primary data, Geodinamika i tekhnogenez. Materialy Vserossiiskogo Soveshchaniya (Geodynamics and Technogenesis: Proceedings of the All-Russia Meeting), Yaroslavl, 2000, Yaroslavl: FGUP NPTs NEDRA, 2000, pp. 118–119.Google Scholar
  54. 54.
    Nikonov, A.A., On neotectonics of Ladoga depression, Tektonika neogeya: obshchie i regional’nye aspekty. Materialy XXXIV Tektonicheskogo soveshchaniya (General and Regional Aspects of Neogean Tectonics: Proceedingsof the XXXIV Meeting on Tectonics), Moscow: GEOS, 2001, vol. 2, pp. 80–83.Google Scholar
  55. 55.
    Nikonov, A.A., Peaceful nuclear power coupled with the deuce (at least, in Russian Polar region), Znanie–Sila, 2004, no. 11, pp. 56–63.Google Scholar
  56. 56.
    Nikonov, A.A., East Ladoga earthquake of November 30, 1921, Izv., Phys. Solid Earth, 2005, vol. 41, no. 7, pp. 525–529.Google Scholar
  57. 57.
    Nikonov, A.A., The Narva earthquake On January 28, 1881, in the eastern part of the Gulf of Finland, Seism. Instrum., 2011, vol. 47, no. 4, pp. 337–345.CrossRefGoogle Scholar
  58. 58.
    Nikonov, A.A., A new stage in understanding seismicity of the East European Platform and its margins, Dokl. Earth Sci., 2013, vol. 450, no. 2, pp. 638–642.CrossRefGoogle Scholar
  59. 59.
    Nikonov, A.A., The Ladoga graben: Inherited evolution in the Quaternary, recent tectonics, and seismicity, Glubinnoe stroenie i geodinamika Priladozh’ya. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Deep Structure and Geodynamics of Ladoga Region: Proceedings of the All-Russia Conference with International Participants) , Petrozavodsk, 2017, Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2017, pp. 146–153.Google Scholar
  60. 60.
    Nikonov, A.A., Young longitudinal fissures in the morphostructure of the Murmansk fault zone, Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN (Proceedings of the Fersman Scientific Session of the Geological Institute, Kola Research Center of the Russian Academy of Sciences), Apatity, Russia, 2018, Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2018, vol. 15, pp. 263–267.Google Scholar
  61. 61.
    Nikonov, A.A. and Zykov, D.S., On the signs of strong earthquakes in the eastern sector of the Murmansk zone (Karpinsky line), Trudy Fersmanovskoi nauchnoi sessii GI KNTs RAN (Proceedings of the Fersman Scientific Session of the Geological Institute, Kola Research Center of the Russian Academy of Sciences), Apatity, Russia, 2017, Apatity: Kol’sk. Nauchn. Tsentr Ross. Akad. Nauk, 2017, vol. 14, pp. 143–148.Google Scholar
  62. 62.
    Nikonov, A.A. and Shvarev, S.V., Prehistrorical earthquakes in the context of improving seismic hazard assessment (earthquake safety) for the East European Platform and its framing, VII Obshcherossiiskaya konferentsiya “Perspektivy razvitiya inzhenernykh izyskanii v stroitel’stve v Rossiiskoi federatsii” (VII All-Russia Conference “Perspectives of Engineering Investigations Development in Building Industry of Russian Federation”), Moscow, 2011, pp. 224–227.Google Scholar
  63. 63.
    Nikonov, A.A. and Shvarev, S.V., Seismolineaments and destructive earthquakes in the Russian part of the Baltic Shield: New solutions for the last 13 000 years, Geologo-geofizicheskaya sreda i raznoobraznye proyavleniya seismichnosti. Materialy Mezhdunarodnoi konferentsii (Geological-Geophysical Medium and Various Manifestations of Seismicity: Proceedings of the International Conference), Neryungri, Russia, 2015, Neryungri: Tekh. Inst. (Fil.) Sev-Vost. Fed. Univ., 2015, pp. 243–251.Google Scholar
  64. 64.
    Nikonov, A.A., Belousov, T.P., Denisova, E.A., Zykov, D.S., and Sergeev, A.P., Deformation structures in the post-glacial deposits of Karelian Isthmus: Morphology, kinematics, and genesis, Tektonika neogeya: obshchie i regional’nye aspekty. Materialy XXXIV Tektonicheskogo soveshchaniya (General and Regional Aspects of Neogean Tectonics: Proceedingsof the XXXIV Meeting on Tectonics), Moscow: GEOS, 2001, vol. 2, pp. 83–86.Google Scholar
  65. 65.
    Nikonov, A.A., Medvedeva, N.S., and Shvarev, S.V., Update of the earthquake catalog ofr the European part of Russia in the framework of preparing the GSZ-12 set of maps, VII Obshcherossiiskaya konferentsiya “Perspektivy razvitiya inzhenernykh izyskanii v stroitel’stve v Rossiiskoi federatsii” (VII All-Russia Conference “Perspectives of Engineering Investigations Development in Building Industry of Russian Federation”), Moscow, 2011, pp. 221–224.Google Scholar
  66. 66.
    Nikonov, A.A., Shvarev, S.V., Sim, L.A., Rodkin, M.V., Biske, Yu.S., and Marinin, A.V., Paleoseismodeformations of hard rocks in the Karelian isthmus, Dokl. Earth Sci., 2014, vol. 457, no. 2, pp. 1008–1013.CrossRefGoogle Scholar
  67. 67.
    Nikonov, A.A., Poleshchuk, A.V., and Zykov, D.S., On the history of distinguishing and study perspectives of young seismodislocations in the Onega structure of the Baltic (Fennoscandian) Shield, “Sovremennye problemy chetvertichnoi geologii i geografii Severo-zapada Evropeiskoi chasti Rossii i sopredel’nykh stran.” Materialy nauchnoi sessii, posvyashchennoi 100-letiyu so dnya rozhdeniya G.S. Biske (Contemporary Problems of Quaternary Geology and Geography of the Northwestern European Part of Russia and Adjacent Countries: Proceedings of the Scientific Session on the 100th Anniversary of G.S. Biske), Petrozavodsk, 2017, Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2017a, pp. 38–42.Google Scholar
  68. 68.
    Nikonov, A.A., Fleifel’, L.D., and Koroleva, A.O., A new object for studying paleoseismodislocations in Karelia: The Girvas site at Suna River, “Sovremennye problemy chetvertichnoi geologii i geografii Severo-zapada Evropeiskoi chasti Rossii i sopredel’nykh stran.” Materialy nauchnoi sessii, posvyashchennoi 100-letiyu so dnya rozhdeniya G.S. Biske (Contemporary Problems of Quaternary Geology and Geography of the Northwestern European Part of Russia and Adjacent Countries: Proceedings of the Scientific Session on the 100th Anniversary of G.S. Biske), Petrozavodsk, 2017, Petrozavodsk: Karel. Tsentr Ross. Akad. Nauk, 2017b, pp. 42–46.Google Scholar
  69. 69.
    Panasenko, G.D., Seismicity of the eastern Baltic Shield, in Seismichnost’ i sovremennye dvizheniya zemnoi kory vostochnoi chasti Baltiiskogo shchita (Seismicity and Contemporary Movements of the Earth’s Crust in the Eastern Baltic Shield), Apatity: Kol’sk. Fil. Akad. Nauk SSSR, 1980, pp. 7–23.Google Scholar
  70. 70.
    Piotrovskaya, T.Yu., Neostructure of the central Khibiny massif and perspectives of searching for apatite-nepheline deposits, Razved. Okhr. Nedr, 1986, no. 2, pp. 6–10.Google Scholar
  71. 71.
    Poleshchuk, A.V., Nikonov, A.A., Zykov, D.S., and Fleifel’, L.D., On the new signs o accommodation of recent movements to ancient intracontinental basement structures in the Paleoproterozoic Onega structure (Baltic Shield, East European Platform), Trudy Vserossiiskoi nauchnoi konferentsii “Aktual’nye problemy dinamicheskoi geologii pri issledovanii platformennykh oblastei” (Topical Problems of Dynamic Geology When Studying Platform Regions: Proceedings of the All-Russia Scientific Conference), Moscow, 2016, Moscow: Pero, 2016, pp. 125–128.Google Scholar
  72. 72.
    Rannii dokembrii Baltiiskogo shchita (Early Precambrian of the Baltic Shield), Glebovitskii, V.A., Ed., St. Petersburg: Nauka, 2005.Google Scholar
  73. 73.
    Romanenko, F.A., Lukashov, A.A., and Shilova, O.S., Catastrophic gravitational processes in the Russian North and practice of their radiocarbon dating, Geomorfologiya, 2011, no. 3, pp. 87–94.Google Scholar
  74. 74.
    Sidorin, A.Ya., On the causes of unordinary periodicity of earthquakes, Seism. Instrum., 2012, vol. 48, no. 2, pp.196–208.CrossRefGoogle Scholar
  75. 75.
    Sokolova, E.Yu. and LADOGA Work Group, The experiment on synchronous magnetotelluric/geomagnetic-variation soundings of the Ladoga zone of anomalous electrical conductivity: New data on the crustal structure of the southeastern Baltic Shield, Glubinnoe stroenie i geodinamika Priladozh’ya. Materialy Vserossiiskoi konferentsii s mezhdunarodnym uchastiem (Deep Structure and Geodynamics of Ladoga Region: Proceedings of the All-Russia Conference), Petrozavodsk, 2017, Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2017, pp. 205–214.Google Scholar
  76. 76.
    Sokolova, E.Yu., Golubtsova, N.S., Kovtun, A.A., Kulikov, V.A., Lozovskii, I.N., Pushkarev P.Yu., Rokityanskii, I.I., Taran, Ya.V., and Yakovlev, A.G., Results of synchronous magnetotelluric and geomagnetic-variation soundings in the area of the Ladoga anomalous zone of electrical conductivity, Geofizika, 2016, no. 1, pp. 48–61.Google Scholar
  77. 77.
    SP (Design Code) 14.13330.2014: Building in Zones Prone to Seismic Hazard, SNiP II-7-81. Google Scholar
  78. 78.
    SP (Design Code) 286.1325800.2016: Building Objects of Higher Responsibility, Rules of Seismic Microzoning. Google Scholar
  79. 79.
    Spungin, V.G. and Zykov, D.S., Microseismicity in local areas: The southeastern part of the Fennoscandian Shield, J. Volcanol. Seismol., 2018, vol. 12, no. 1, pp. 56–66.CrossRefGoogle Scholar
  80. 80.
    Sharov, N.V., Seismic monitoring of natural and technogenic events in the territory of Karelia, in Geologiya Karelii ot arkheya do nashikh dnei (Geology of Karelia since the Archean until Present), Petrozavodsk: Inst. Geol. Karel. Nauchn. Tsentra Ross. Akad. Nauk, 2011, pp. 199–203.Google Scholar
  81. 81.
    Shvarev, S.V., Post-glacial tectonic movement and formation of terraces of Lake Imandra (Kola Peninsula), Geomorfologiya, 2003, no. 4, pp. 97–104.Google Scholar
  82. 82.
    Shvarev, S.V., Eskers and post-glacial tectonic activation: spatial and genetic relationships (cases study of the Karelian Isthmus), XXXVI Plenum geomorfologicheskoi komissii Rossiiskoi akademii nauk: materialy Vserossiiskoi nauchno-prakticheskoi konferentsii s mezhdunarodnym uchastiem “Geomorfologiya - nauka XXI veka,” (XXXVI Pleum of the Commission for Geomorphology, Russian Academy of Sciences: Proceedings of the All-Russia Conference with International Participants “Geomorphology, Science of the 21st Century”), Barnaul, 2018, Barnaul: Altai. Gos. Univ., 2018a, pp. 400–403.Google Scholar
  83. 83.
    Shvarev, S.V., Morphotectonics and exogenous processes of the Kola Peninsula, Practical Geography and XXI Century Challenges: International Geographical Union Thematic Conference Dedicated to the Centennial of the Institute of Geography of the Russian Academy of Sciences, Moscow: Inst. Geogr. Russ. Acad. Sci., 2018b, pp. 544–550.Google Scholar
  84. 84.
    Shvarev, S.V., Traces of postglacial seismic activity in the bedrock and unconsolidated sediments on the south-western shore of lake Onega, Lateglacial – Interglacial Transitions: Glaciotectonic, Seismoactivity, Catastrophic Hydrographic and Landscape Changes. Excursion guide and Abstracts of INQUA Peribaltic Working Group Meeting and Excursion (International Scientific Conference and School for Young Scientists), Petrozavodsk, Russia, 2018, Petrozavodsk: Karel. Res. Centre Russ. Acad. Sci., 2018c, pp. 15–18.Google Scholar
  85. 85.
    Shvarev, S.V. and Rodkin, M.V., tructural position and parameters of the paleoearthquakes in the area of Vottovaara Mountain (Middle Karelia, eastern part of the Fennoscandian Shield), Sesim. Instrum., 2018, vol. 54, no. 2, pp. 199–218.   https://doi.org/10.3103/S0747923918020093 CrossRefGoogle Scholar
  86. 86.
    Shvarev, S.V., Nikonov, A.A., Rodkin, M.V., and Poleshcshuk, A.V., The active tectonics of the Vuoksi fault zone in the Karelian Isthmus: Parameters of paleoearthquakes estimated from bedrock and soft sediment deformation features, Bull. Geol. Soc. Finland, 2018, INQUA spec. is., pp. 89–105.Google Scholar
  87. 87.
    Smedberg, I., Uski, M., Tiira, T., Korja, A., and Komminaho, K., Intraplate earthquake swarm in Kouvola, south-eastern Finland, General Assembly European Geosciences Union 2012. Vienna, Austria, 2012, EGU2012. 8446.Google Scholar
  88. 88.
    Sokolova, E., Mints, M., Golubtsova, N., Kulikov, V., Pushkarev, P., Zaytsev, S., and LADOGA Group, Advances in deep geoelectric modeling for SE Baltic shield with integrated geophysical and geological interpretation, Abstracts of 24th EM Induction Workshop, Helsingor, Denmark, 2018, Session 4, p. 8.  https://doi.org/10.13140/RG.2.2.30360.85768
  89. 89.
    Subetto, D.A., Shvarev, S.V., Nikonov, A.A., Zaretskaya, N.E., Potakhin, M.S., and Poleshchuk, A.V., New evidences of the Vuoksi River origin by geodynamic cataclysm, Bull. Geol. Soc. Finland, 2018, INQUA spec. is., pp. 73–87.Google Scholar
  90. 90.
    Uski, M., Tiira, T., Korja, A., and Elo, S., The 2003 earthquake swarm in Anjalankoski, south-eastern Finland, Tectonophysics, 2006, vol. 422, nos. 1–4, pp. 55–69.  https://doi.org/10.1016/j.tecto.2006.05.014 CrossRefGoogle Scholar
  91. 91.
    Varpasuo, P., Estimation of seismic hazard in the territory of Southern Finland, Proceedings of the 8th International Conference on Structural Safety and Reliability (ICOSSAR), Los Angeles, USA, 2001.Google Scholar
  92. 92.
    Varpasuo, P., The seismic site hazard assessment for OL3 NPP in Finland, 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) SMiRT18-KM012, Beijing, China, 2005, pp. 3716–3727.Google Scholar
  93. 93.
    Wahlstrom, R. and Assinovskaya, B.A., Seismotectonics and lithospheric stresses in the Northern Fennoscandian Shield, Geophysica, 1998, vol. 34, nos. 1–2, pp. 51–61.Google Scholar
  94. 94.
    Yaduta, V.A., Karta noveishei tektoniki Karelii 1 : 2 500 000 (Map of the Recent Tectonics of Karelia, 1 : 2 500 000), Sevzapgeologiya, 1998.Google Scholar
  95. 95.
    Zykov, D.S. and Poleshchuk, A.V., Interaction between geodynamic systems in the East European Platform in recent time, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 2016, vol. 91, no. 1, pp. 3–14.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • O. O. Erteleva
    • 1
    Email author
  • A. Ya. Sidorin
    • 1
  • E. Yu. Sokolova
    • 1
  • A. A. Lukk
    • 1
  • A. A. Nikonov
    • 1
  • F. F. Aptikaev
    • 1
  • S. V. Shvarev
    • 1
    • 2
  1. 1.Schmidt Institute of Physics of the Earth, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Geography, Russian Academy of SciencesMoscowRussia

Personalised recommendations