Skip to main content
Log in

Developing a Method for Experimental Studies of Crustal Structure in Marine Areas in Different Seasons

  • Published:
Seismic Instruments Aims and scope Submit manuscript

Abstract

A method for experimental studies of crustal structure and composition in marine areas during warm and cold seasons is described. The method employs an electromagnetic low-frequency hydroacoustic transmitter, which generates complex phase-shift keyed signals (M-sequences) in water with a center frequency of 33 Hz, and a mobile laser strainmeter with a measuring arm length of 6 m. In an area with a sea depth of 14 m, the transmitter was lowered to a depth of 12 m. Processing of the obtained experimental data revealed five arrivals of transmitted phase-shift keyed signals to the laser strainmeter, which propagated along the layer boundaries of the upper crust of marine areas. The propagation velocities of these signals have been determined. In winter, they are approximately 2600, 2140, 1750, 1550, and 1280 m/s; in spring, 2250, 1950, 1700, 1480, and 1300 m/s. The calculated velocities agree well with the model data. Future results will make it possible to create a technology to remotely study crustal structure and composition in shelf zones, including shelf zones covered by ice, without destroying it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Averbakh, V.S., Artel’nyi, V.V., Bogolyubov, B.N., Virovlyanskii, A.L., Maryshev, A.P., and Talanov, V.I., Promising methods and technical tools of seismoacoustic sounding of the shelf and coastal zone of the ocean, in Fundamental’nye issledovaniya okeanov i morei (Fundamental Research of Seas and Oceans), Moscow: Nauka, 2006, vol. 2, pp. 491–511.

  2. Averbakh, V.S., Bogolyubov, B.N., Zaslavskii, Yu.M., Lebedev, A.V., Maryshev, A.P., Postoenko, Yu.K., and Talanov, V.I., Application of complex phase-shift keyed signals in seismic sounding of ground with a hydroacoustic source, Acoust. Phys., 1999, vol. 45, no. 1, pp. 1–7.

    Google Scholar 

  3. Bottom-Interacting Ocean Acoustics, vol. 5 of NATO Conf. Ser. IV, Kuperman, W.A. and Jensen, F.B., Eds., New York: Plenum, 1980.

  4. Chupin, V.A. and Dolgikh, G.I., Development of the technology for seafloor diagnostics using low-frequency hydroacoustic emitting device and onshore laser strainmeters, Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, 2015, no. 6, pp. 90–95.

  5. Dettmer, J., Holland, C.W., and Dosso, S.E., Analyzing lateral seabed variability with Bayesian inference of seabed reflection data, J. Acoust. Soc. Am., 2009, vol. 125, no. 1, pp. 56–69.

    Article  Google Scholar 

  6. Diez, A., Bromirski, P.D., Gerstoft, P., Stephen, R.A., Anthony, R.E., Aster, R.C., Cai, C., Nyblade, A., and Wiens, D.A., Ice shelf structure derived from dispersion curve analysis of ambient seismic noise, Ross Ice Shelf, Antarctica, Geophys. J. Int., 2016, vol. 205, pp. 785–795. https://doi.org/10.1093/gji/ggw036

    Article  Google Scholar 

  7. Dolgikh, G.I., Budrin, S.S., Dolgikh, S.G., Ovcharenko, V.V., Chupin, V.A., and Yakovenko, S.V., Particulars of a transmitted acoustic signal at the shelf of decreasing depth, J. Acoust. Soc. Am., 2017, vol. 142, no. 4, pp. 1990–1996. https://doi.org/10.1121/1.5006904

    Article  Google Scholar 

  8. Dolgikh, G.I., Laser interference complex, Seism. Prib., 2003, vol. 39, pp. 13–27.

    Google Scholar 

  9. Dolgikh, G.I., Kovalev, S.N., Koren’, I.A., and Ovcharenko, V.V., A two-coordinate laser strainmeter, Izv., Phys. Solid Earth, 1998, vol. 34, no. 11, pp. 946–950.

    Google Scholar 

  10. Dolgikh, G.I., Dolgikh, S.G., Pivovarov, A.A., Samchenko, A.N., Chupin, V.A., Shvyryov, A.N., and Yaroshchuk, I.O., The feasibility of laser strainmeters for sea floor diagnostics, Dokl. Earth Sci., 2013, vol. 452, no. 3, pp. 321–325.

    Article  Google Scholar 

  11. Dolgikh, G.I., Dolgikh, S.G., Pivovarov, A.A., Samchenko, A.N., Shvyrev, A.N., Chupin, V.A., Yakovenko, S.V., and Yaroshchuk, I.O., A hydroacoustic system that radiates at frequencies of 19−26 Hz, Instrum. Exp. Tech., 2017, vol. 60, no. 4, pp. 596−599. https://doi.org/10.1134/S0020441217030186.

  12. Dolgikh, G.I., Yaroshchuk, I.O., Pivovarov, A.A., Penkin, S.I., and Shvyrev, A.N., A low-frequency broadband hydroacoustic emitting, Prib. Tekh. Eksp., 2007, no. 5, pp. 163–164.

  13. Dosso, S.E., Nielsen, P.L., and Harison, C.H., Bayesian inversion of reverberation and propagation data for geoacoustic and scattering parameters, J. Acoust. Soc. Am., 2009, vol. 125, no. 5, pp. 2867–2880.

    Article  Google Scholar 

  14. Goh, Y.H., Gerstoft, P., and Hodgkiss, W.S., Statistical estimation of transmission loss from geoacoustic inversion using a towed array, J. Acoust. Soc. Am., 2007, vol. 122, no. 5, pp. 2571–2579.

    Article  Google Scholar 

  15. Gorbenko, V.I., Zhostkov, R.A., Likhodeev, D.V., Presnov, D.A., and Sobisevich, A.L., Feasibility of using molecular-electronic seismometers in passive seismic prospecting: Deep structure of the Kaluga ring structure from microseismic sounding, Seism. Instrum., 2017, vol. 53, no. 3, pp. 181−191. https://doi.org/10.3103/S0747923917030045

    Article  Google Scholar 

  16. Hamilton, E.L., Geoacoustic modeling of sea floor, J. Acoust. Soc. Am., 1980, vol. 68, no. 5, pp. 1313–1340.

    Article  Google Scholar 

  17. Lebedev, A.V. and Malekhanov, A.I., Coherent seismoacoustics, Izv. Vyssh. Uchebn. Zaved., Radiofiz., 2003, vol. 46, no. 7, pp. 579–597.

    Google Scholar 

  18. Samchenko, A.N., Karnaukh, V.N., and Aksentov, K.I., Geological-geophysical studies of the upper part of the sedimentary cover and the geoacoustic model of the shelf zone in the Posyet Bay, Sea of Japan, Tikhookean. Geol., 2013, vol. 32, no. 1, pp. 65–75.

    Google Scholar 

  19. Tolstoy, A., Matched field processing (MFP)-based inversion method (SUB-RIGS) for range-dependent scenarios, IEEE J. Oceanic Eng., 2004, vol. 29, no. 1, pp. 59–77.

    Article  Google Scholar 

  20. Tolstoy, A., Propagation model accuracy for MFP, J. Comp. Acoust., 2000, vol. 8, no. 3, pp. 389–399.

    Article  Google Scholar 

  21. Tolstoy, A., Volumetric (tomographic) three-dimensional geoacoustic inversion in shallow water, J. Acoust. Soc. Am., 2008, vol. 124, no. 5, pp. 2793–2804.

    Article  Google Scholar 

  22. Yang, J., Jackson, D.R., and Tang, D., Mid-frequency geoacoustic inversion using bottom loss data from the Shallow Water 2006 Experiment, J. Acoust. Soc. Am., 2012, vol. 131, no. 2, pp. 1711–1721. https://doi.org/10.1121/1.3666009

    Article  Google Scholar 

  23. Yardim, C., Gerstoft, P., and Hodgkiss, W.S., Sequential geoacoustic inversion at the continental shelfbreak, J. Acoust. Soc. Am., 2012, vol. 131, no. 2, pp. 1722–1732. https://doi.org/10.1121/1.3666012

    Article  Google Scholar 

Download references

Funding

Part of the research was carried out with the financial support of the Russian Foundation for Basic Research (project no. 16-29-02023 ofi_m, conducting of the experiment and processing and interpreting the data).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Dolgikh.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dolgikh, G.I., Budrin, S.S., Dolgikh, S.G. et al. Developing a Method for Experimental Studies of Crustal Structure in Marine Areas in Different Seasons. Seism. Instr. 55, 369–376 (2019). https://doi.org/10.3103/S0747923919040042

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0747923919040042

Keywords:

Navigation