Advertisement

Seismic Instruments

, Volume 47, Issue 1, pp 15–23 | Cite as

Intelligent seismoacoustic system for monitoring the beginning of anomalous seismic process

  • T. A. Aliev
  • A. A. Alizade
  • G. D. Etirmishli
  • G. A. Guluev
  • F. G. Pashaev
  • A. G. Rzaev
Article

Abstract

An intelligent system for monitoring anomalous seismic processes intended for predicting the beginning of an earthquake by standard ground-based stations is presented. The problem is solved by analyzing the seismoacoustic signals coming from deep layers of the Earth. The signals are detected by acoustic sensors placed at the mouths of deep suspended wells.

Keywords

seismoacoustic system for intelligent monitoring noise anomalous seismic processes model acoustic digital technology indication short-term prediction of earthquake 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullabekov, K.N., Several Problems for Predicting the Earthquakes in, in Republican Seismic Survey Center of Az.NAS, Catalogue of Seismoforecasting Research Carried out in Azerbaijan Territory in 2008, 2009, pp. 35–38.Google Scholar
  2. Aliev, T.A., Robust Technology with Analysis of Interference in Signal Processing, New York: Kluwer Academic/Plenum Press, 2003.Google Scholar
  3. Aliev, T., Digital Noise Monitoring of Defect Origin, London: Springer-Verlag, 2007.Google Scholar
  4. Aliev, T.A., Theoretical Foundations for Analyzing the Noises and for Accident Noise-Prediction, Kibernet. Sist. Anal., 2008, no. 4, pp. 20–31.Google Scholar
  5. Aliev, T.A. and Abbasov, A.M., Digital Technology and the System of Interference Monitoring of the Technical State of Constrictive Objects, and the System of the Signaling of Abnormal Seismic Processes, Automat. Control Comput. Sci., 2005, no. 6, pp. 3–10.Google Scholar
  6. Aliev, T.A., Abbasov, A.M., Aliev, E.R., and Guluev, G.A., Digital Technology and the System for Receiving and Analyzing the Information from Deep Earth Layers for Noise-Monitoring the Technical State of the Socially-Significant Objects, Avtomat. Vychisl. Tekh., 2007, no. 2, pp. 3–15.Google Scholar
  7. Aliev, T.A., Guluev, G.A., Rzaev, A.G., Pashaev, F.G., and Abbasov, A.M., Position-Binary and Spectral Indicators of Microchanges Taking Place in Checking Objects, Avtomat. Vychisl. Tekh., 2009, no. 3, pp. 57–69.Google Scholar
  8. Descherevsky, A.V. and Sidorin, A.Ya., Seasonal Variations in Natural Processes and Atmospheric Precipitation, Ann. Geophys., 2004, vol. 47, no. 1, pp. 73–81.Google Scholar
  9. Kanamori, H., Earthquake Prediction: an Overview. IASPEI Handbook of Earthquake and Engineering Seismology, 2000, Available from: http://web.gps.caltech.edu/faculty/kanamori/Earthquake-Prediction.pdf
  10. Koronovskii, N.V. and Abramov, V.A., Earthquakes: Reasons, Aftermath, Prediction, Soros. Obrazovat. Zh., 1998, no. 12, pp. 77–78.Google Scholar
  11. Kossobokov, V. and Soloviev, A., Forecast/Prediction of Extreme Events: Fundamentals and Prerequisites of Verification, Geophys. Res. Abstr., 2008, vol. 10, p. EGU2008-A–07031.Google Scholar
  12. Kuptsov, A.V., Marapulets, Yu.V., and Shevtsov, B.M., Analysis of Geoacoustic Emission During Major Earthquake Development at Kamchatka, Elektron. Zh. “Issled. Rossii,” 2004, pp. 2809–2819.Google Scholar
  13. Larionov, I.A., Shcherbina, A.O., and Mishenko, M.A., Geoacoustic Emission Response to the Major Earthquake Development in Different points of Observation, Vestn. KRAUNTs. Nauka Zemle, 2005, no. 2, issue 6, pp. 108–115.Google Scholar
  14. Mogi, K., Earthquake Prediction, Academic Press, 1985.Google Scholar
  15. Rulenko, O.R., The New Procedure for Detecting and Investigating the Foreshocks in the Near-Ground Atmosphere Electricity, Vestn. KRAUNTs. Nauka Zemle, 2008, no. 2, issue 12, pp. 42–47.Google Scholar
  16. Sidorin, A.Ya., Predvestniki zemletryasenii (Foreshocks), Moscow: Nauka, 1992.Google Scholar
  17. Shebalin, P., Kellis-Borok, V., Gabrielov, A., Zaliapin, I., and Turcotte, D., Short-Term Earthquake Prediction by Reverse Analysis of Lithosphere Dynamics, Tetonophys., 2006, vol. 413, pp. 63–75.CrossRefGoogle Scholar
  18. Sobolev, G.A., Osnovy prognoza zemletryasenii (Foundations of the Earthquake Prediction), Moscow: Nedra, 1993.Google Scholar
  19. Tikhonov, I.N., Major Earthquakes in Sakhalin Region: Investigations and Predictions, Vestn. Dal’nevost. Otd. Akad. Nauk, 2006, no. 1, pp. 67–80.Google Scholar
  20. Utkin, V.I., Radon and the Problems of Tectonic Earthquakes, Soros. Obrazovat. Zh., 2006, no. 12, pp. 64–69.Google Scholar
  21. Voznesenskii, E.A., Earthquakes and Soil Dynamic, Soros. Obrazovat. Zh., 1998, no. 12, pp. 101–108.Google Scholar
  22. Zakharov, V.S., Simonov, D.A., and Koptev, A.I., Integral Analysis of Predictive Information to Separate the Districts Where the Major Earthquakes Can Be (by Example of Kuril-Kamchatka Chain 2006–2007)), Elektron. Nauch. Izd. GEOrazrez, 2009, issue 1.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • T. A. Aliev
    • 1
  • A. A. Alizade
    • 2
  • G. D. Etirmishli
    • 3
  • G. A. Guluev
    • 1
  • F. G. Pashaev
    • 1
  • A. G. Rzaev
    • 1
  1. 1.Cybernetics InstituteNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  2. 2.Institute of GeologyNational Academy of Sciences of AzerbaijanBakuAzerbaijan
  3. 3.Republican Seismic Survey CenterNational Academy of Sciences of AzerbaijanBakuAzerbaijan

Personalised recommendations