Skip to main content

Comparative Analysis of Spectral Characteristics of Pulse GPR Signals for Road Pavement Assessment

Abstract

Results of experiments on the use of three antenna units of ultra-wideband ground penetrating radars (UWB GPR) for nondestructive testing are presented. These three units have both different values of the centres frequency of the probing UWB pulses and different antenna configurations. The purpose of the performed experiments was to find the best values of sensing parameters. Another task was to optimize the technique for processing signals reflected from plane-layered media. The performed analysis of the obtained results showed the ways for improving the quality of nondestructive testing of road pavement and other building structures by using the UWB GPR. The proposed approach is based on the previously offered algorithm for the stepwise determination of the pavement layer thickness and the relative dielectric permittivity.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

References

  1. Ground Penetrating Radar Theory and Applications (Elsevier B.V., Amsterdam, 2008). URI: https://www.elsevier.com/books/ground-penetrating-radar-theory-and-applications/jol/978-0-444-53348-7.

    Google Scholar 

  2. G. P. Pochanin, V. P. Ruban, P. V. Kholod, A. A. Shuba, A. G. Pochanin, A. A. Orlenko, "Enlarging of power budget of ultrawideband radar," in 2013 6th International Conference on Recent Advances in Space Technologies (RAST) (IEEE, 2013). DOI: https://doi.org/10.1109/RAST.2013.6581203.

    Chapter  Google Scholar 

  3. D. O. Batrakov, N. P. Zhuck, "Solution of a general inverse scattering problem using the distorted Born approximation and iterative technique," Inverse Probl., v.10, n.1, p.39 (1994). DOI: https://doi.org/10.1088/0266-5611/10/1/004.

    MathSciNet  Article  MATH  Google Scholar 

  4. T. Saarenketo, "Electrical properties of road materials and subgrade soils and the use of ground penetrating radar in traffic infrastructure surveys" (2006).

  5. S. Pengcheng, "Development of algorithms for asphalt pavement compaction monitoring utilizing ground penetrating radar," Urbana (2014).

  6. Smart Pavement Monitoring System. Report No. FHWA-HRT-12-072 (2013).

  7. G. P. Arnold, F. Sing, T. Saarenketo, T. Saarenpaa, "Pavement moisture measurement to indicate risk to pavement life," NZ Transp. Agency Res., n.Report 611 (2017). URI: https://www.nzta.govt.nz/resources/research/reports/611/.

    Google Scholar 

  8. Z. Dong, S. Ye, Y. Gao, G. Fang, X. Zhang, Z. Xue, T. Zhang, "Rapid detection methods for asphalt pavement thicknesses and defects by a vehicle-mounted ground penetrating radar (GPR) system," Sensors, v.16, n.12, p.2067 (2016). DOI: https://doi.org/10.3390/s16122067.

    Article  Google Scholar 

  9. J. Hu, P. K. R. Vennapusa, D. J. White, I. Beresnev, "Pavement thickness and stabilised foundation layer assessment using ground-coupled GPR," Nondestruct. Test. Eval., v.31, n.3, p.267 (2016). DOI: https://doi.org/10.1080/10589759.2015.1111890.

    Article  Google Scholar 

  10. L. Krysiński, J. Sudyka, "Typology of reflections in the assessment of the interlayer bonding condition of the bituminous pavement by the use of an impulse high-frequency ground-penetrating radar," Nondestruct. Test. Eval., v.27, n.3, p.219 (2012). DOI: https://doi.org/10.1080/10589759.2012.674525.

    Article  Google Scholar 

  11. J. Sudyka, L. Krysiński, "Evaluation of homogeneity of thickness of new asphalt layers using GPR," IOP Conf. Ser. Mater. Sci. Eng., v.356, n.1, p.012025 (2018). DOI: https://doi.org/10.1088/1757-899X/356/1/012025.

    Article  Google Scholar 

  12. T. Xia, D. Huston, "High speed ground penetrating radar for road pavement and bridge structural inspection and maintenance" (2016).

  13. D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, "Remote sensing of plane-layered media with losses using UWB signals," in 2017 XI International Conference on Antenna Theory and Techniques (ICATT) (IEEE, 2017). DOI: https://doi.org/10.1109/ICATT.2017.7972666.

    Chapter  Google Scholar 

  14. A. De Coster, A. Van der Wielen, C. Grégoire, S. Lambot, "Evaluation of pavement layer thicknesses using GPR: A comparison between full-wave inversion and the straight-ray method," Constr. Build. Mater., v.168, p.91 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.02.100.

    Article  Google Scholar 

  15. P. Eskelinen, T. Pellinen, "Comparison of different radar technologies and frequencies for road pavement evaluation," Constr. Build. Mater., v.164, p.888 (2018). DOI: https://doi.org/10.1016/j.conbuildmat.2018.01.124.

    Article  Google Scholar 

  16. D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, "UWB signal processing during thin layers thickness assessment," in 2016 IEEE Radar Methods and Systems Workshop (RMSW) (IEEE, 2016). DOI: https://doi.org/10.1109/RMSW.2016.7778545.

    Chapter  Google Scholar 

  17. R. A. Tarefder, M. U. Ahmed, "Ground penetrating radar for measuring thickness of an unbound layer of a pavement," in Advances in Intelligent Systems and Computing (2018). DOI: https://doi.org/10.1007/978-3-319-60011-6_16.

    Chapter  Google Scholar 

  18. D. Batrakov, A. Batrakova, M. Antyufeyeva, "Combined GPR data analysis technique for diagnostics of structures with thin near-surface layers," Diagnostyka, v.19, n.3, p.11 (2018). DOI: https://doi.org/10.29354/diag/91489.

    Article  Google Scholar 

  19. D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, "Inverse problems and UWB signals in biomedical engineering and remote sensing," in 2016 8th International Conference on Ultrawideband and Ultrashort Impulse Signals (UWBUSIS) (IEEE, 2016). DOI: https://doi.org/10.1109/UWBUSIS.2016.7724174.

    Chapter  Google Scholar 

  20. D. O. Batrakov, M. S. Antyufeyeva, A. V. Antyufeyev, A. G. Batrakova, "GPR data processing for evaluation of the subsurface cracks in road pavements," in 2017 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR) (IEEE, 2017). DOI: https://doi.org/10.1109/IWAGPR.2017.7996072.

    Chapter  Google Scholar 

  21. D. O. Batrakov, M. S. Antyufeyeva, A. G. Batrakova, V. V. Troyanovsky, M. O. Pilicheva, "UWB signal processing for the road pavements assessment," in 2019 IEEE 2nd Ukraine Conference on Electrical and Computer Engineering (UKRCON) (IEEE, 2019). DOI: https://doi.org/10.1109/UKRCON.2019.8879866.

    Chapter  Google Scholar 

  22. T. Uno, S. Adachi, "Inverse scattering method for one-dimensional inhomogeneous layered media," IEEE Trans. Antennas Propag., v.35, n.12, p.1456 (1987). DOI: https://doi.org/10.1109/TAP.1987.1144033.

    MathSciNet  Article  MATH  Google Scholar 

  23. A. G. Tijhuis, C. van der Worm, "Iterative approach to the frequency-domain solution of the inverse-scattering problem for an inhomogeneous lossless dielectric slab," IEEE Trans. Antennas Propag., v.32, n.7, p.711 (1984). DOI: https://doi.org/10.1109/TAP.1984.1143410.

    Article  Google Scholar 

  24. D. O. Batrakov, "Quality and efficiency of data analysis in multifrequency radio-wave testing of laminated dielectrics," Russ. J. Nondestruct. Test., v.34, n.8, p.612 (1998).

    Google Scholar 

  25. T. M. Habashy, W. C. Chew, E. Y. Chow, "Simultaneous reconstruction of permittivity and conductivity profiles in a radially inhomogeneous slab," Radio Sci., v.21, n.4, p.635 (1986). DOI: https://doi.org/10.1029/RS021i004p00635.

    Article  Google Scholar 

  26. S. He, "Frequency and time domain Green function technique for nonuniform LCRG transmission lines with frequency-dependent parameters," J. Electromagn. Waves Appl., v.7, n.1, p.31 (1993). DOI: https://doi.org/10.1163/156939393X01065.

    Article  Google Scholar 

  27. D. O. Batrakov, N. P. Zhuk, "Method for testing of layer-non-homogeneous dielectrics using numerical solution of reverse problem dialing with dissipation in polarization parameters domain," Defektoskopiya, n.2, p.82 (1994).

    Google Scholar 

  28. S. Zhao, P. Shangguan, I. L. Al-Qadi, "Application of regularized deconvolution technique for predicting pavement thin layer thicknesses from ground penetrating radar data," NDT E Int., v.73, p.1 (2015). DOI: https://doi.org/10.1016/j.ndteint.2015.03.001.

    Article  Google Scholar 

  29. L. Y. Astanin, A. A. Kostylev, Ultrawideband Radar Measurements: analysis and processing (IET, The Institution of Engineering and Technology, Michael Faraday House, Six Hills Way, Stevenage SG1 2AY, UK, 1997). DOI: https://doi.org/10.1049/PBRA007E.

    Book  Google Scholar 

  30. L. Y. Astanin, M. V. Kipke, V. V. Kostyleva, "The structural features of ultrawideband signals," in 2008 4th International Conference on Ultrawideband and Ultrashort Impulse Signals (IEEE, 2008). DOI: https://doi.org/10.1109/UWBUS.2008.4669402.

    Chapter  Google Scholar 

  31. D. Batrakov, A. Batrakova, S. Urdzik, R. Danielyan, "Nondestructive diagnostics and detection of subsurface cracks in non-rigid pavements with GPR," Diagnostyka, v.22, n.2, p.85 (2021). DOI: https://doi.org/10.29354/diag/137915.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Education and Science of Ukraine, grant 0117U004862.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitriy O. Batrakov.

Ethics declarations

ADDITIONAL INFORMATION

Dmitriy O. Batrakov, Mariya S. Antyufeyeva, and Angelika G. Batrakova

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021050022 with DOI: https://doi.org/10.20535/S0021347021050022

About this article

Verify currency and authenticity via CrossMark

Cite this article

Batrakov, D.O., Antyufeyeva, M.S. & Batrakova, A.G. Comparative Analysis of Spectral Characteristics of Pulse GPR Signals for Road Pavement Assessment. Radioelectron.Commun.Syst. 64, 238–246 (2021). https://doi.org/10.3103/S0735272721050022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721050022