Skip to main content
Log in

Analysis of Amplitude-Frequency Response of Acousto-Optic Delay Line

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

A mathematical model of the signal formation process at the output of acousto-optic delay line (AODL) with direct detection has been proposed. This model is used to derive an equation of the AODL transient response. This equation is used to derive a formula for the pulse response characteristic that is utilized to determine the AODL voltage frequency transfer factor. The exponential notation of the frequency transfer factor is discussed. Analytical expression for the amplitude-frequency response of AODL with direct detection is obtained, and its numerical analysis is carried out. The analysis results have been experimentally tested on an appropriate mock-up. The results of experimental investigations confirmed the validity of the proposed mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. S. N. Mantsevich, E. I. Kostyleva, "Examination of the temperature influence on phase matching frequency in tunable acousto-optic filters," Ultrasonics, v.91, n.0, p.45 (2019). DOI: https://doi.org/10.1016/j.ultras.2018.07.016.

    Article  Google Scholar 

  2. Z. He, C. Li, R. Xu, G. Lv, L. Yuan, J. Wang, "Spectrometers based on acousto-optic tunable filters for in-situ lunar surface measurement," J. Appl. Remote Sens., v.13, n.02, p.1 (2019). DOI: https://doi.org/10.1117/1.JRS.13.027502.

    Article  Google Scholar 

  3. A. A. Orlov, O. D. Moskaletz, D. O. Moskaletz, "Correlation measurements in the optical range," in Optics and Photonics for Information Processing IX (SPIE, 2015). DOI: https://doi.org/10.1117/12.2187797.

    Chapter  Google Scholar 

  4. O. V. Shakin, V. G. Nefedov, P. A. Churkin, "Aplication of Acoustooptics in Electronic Devices," in 2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF) (IEEE, 2018). DOI: https://doi.org/10.1109/WECONF.2018.8604351.

    Chapter  Google Scholar 

  5. K. B. Yushkov, V. Y. Molchanov, A. V. Ovchinnikov, O. V. Chefonov, "Acousto-optic replication of ultrashort laser pulses," Phys. Rev. A, v.96, n.4, p.043866 (2017). DOI: https://doi.org/10.1103/PhysRevA.96.043866.

    Article  Google Scholar 

  6. O. Schubert, M. Eisele, V. Crozatier, N. Forget, D. Kaplan, R. Huber, "Rapid-scan acousto-optical delay line with 34 kHz scan rate and 15 as precision," Opt. Lett., v.38, n.15, p.2907 (2013). DOI: https://doi.org/10.1364/OL.38.002907.

    Article  Google Scholar 

  7. J. Chandezon, J.-M. Rampnoux, S. Dilhaire, B. Audoin, Y. Guillet, "In-line femtosecond common-path interferometer in reflection mode," Opt. Express, v.23, n.21, p.27011 (2015). DOI: https://doi.org/10.1364/OE.23.027011.

    Article  Google Scholar 

  8. M. Okoń-Fąfara, A. Kawalec, A. Witczak, "Radar air picture simulator for military radars," in XII Conference on Reconnaissance and Electronic Warfare Systems (SPIE, 2019). DOI: https://doi.org/10.1117/12.2525032.

    Chapter  Google Scholar 

  9. A. R. Diewald, M. Steins, S. Müller, "Radar target simulator with complex-valued delay line modeling based on standard radar components," Adv. Radio Sci., v.16, p.203 (2018). DOI: https://doi.org/10.5194/ars-16-203-2018.

    Article  Google Scholar 

  10. S. Pavan, E. Klumperink, "Analysis of the Effect of Source Capacitance and Inductance on N-Path Mixers and Filters," IEEE Trans. Circuits Syst. I Regul. Pap., v.65, n.5, p.1469 (2018). DOI: https://doi.org/10.1109/TCSI.2017.2754342.

    Article  Google Scholar 

  11. W. Feng, J. M. Friedt, G. Goavec-Merou, M. Sato, "Passive Radar Delay and Angle of Arrival Measurements of Multiple Acoustic Delay Lines Used as Passive Sensors," IEEE Sensors J., v.19, n.2, p.594 (2019). DOI: https://doi.org/10.1109/JSEN.2018.2872867.

    Article  Google Scholar 

  12. A. R. Hasanov, R. A. Hasanov, "A Study of the Response of Acousto-Optic Delay Lines to a Short Input Stimulus," Instruments Exp. Tech., v.61, n.3, p.367 (2018). DOI: https://doi.org/10.1134/S0020441218030119.

    Article  Google Scholar 

  13. V. I. Balakshii, V. N. Parygin, L. E. Chirkov, Physics of Acoustooptics (Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  14. J. N. Lee, A. Vanderugt, "Acoustooptic signal processing and computing," Proc. IEEE, v.77, n.10, p.1528 (1989). DOI: https://doi.org/10.1109/5.40667.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. R. Gasanov.

Ethics declarations

ADDITIONAL INFORMATION

A. R. Gasanov, R. A. Gasanov, and R. A. Akhmedov

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347021010040 with DOI: https://doi.org/10.20535/S0021347021010040

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasanov, A.R., Gasanov, R.A. & Akhmedov, R.A. Analysis of Amplitude-Frequency Response of Acousto-Optic Delay Line. Radioelectron.Commun.Syst. 64, 36–44 (2021). https://doi.org/10.3103/S0735272721010040

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272721010040

Navigation