Skip to main content
Log in

Small-Size Algorithms for Type-IV Discrete Cosine Transform with Reduced Multiplicative Complexity

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Discrete cosine transforms are widely used in smart radioelectronic systems for processing and analysis of incoming information. The popularity of using these transform is explained by the presence of fast algorithms that minimize the computational and hardware complexity of their implementation. Type-IV discrete cosine transform occupies a special place in the list of the specified transformations. This article proposes several algorithmic solutions for implementing the type-IV discrete cosine transform. The effectiveness of the proposed solutions is explained by the possibility of factorization of the DCT-IV matrix, which leads to a decrease in computational and implementation complexity. A set of completely parallel type-IV DCT algorithms for small lengths of signal sequences (N = 2, 3, 4, 5, 6, 7, 8, 9) is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
.
.
Fig. 6.
Fig. 7.
.
.
.
.
.
.
.
.
.
Fig. 8.

Similar content being viewed by others

References

  1. N. Ahmed, T. Natarajan, K. R. Rao, "Discrete Cosine Transform," IEEE Trans. Comput., v.C–23, n.1, p.90 (1974). DOI: https://doi.org/10.1109/T-C.1974.223784.

    Article  MathSciNet  MATH  Google Scholar 

  2. N. Ahmed, K. R. Rao, Orthogonal Transforms for Digital Signal Processing (Springer Berlin Heidelberg, Berlin, Heidelberg, 1975). DOI: https://doi.org/10.1007/978-3-642-45450-9.

    Book  MATH  Google Scholar 

  3. K. R. Rao, P. Yip, Discrete Cosine Transform (Elsevier, 1990). DOI: https://doi.org/10.1016/C2009-0-22279-3.

    Book  MATH  Google Scholar 

  4. V. Britanak, P. C. Yip, K. R. Rao, Discrete Cosine and Sine Transforms (Elsevier, 2007). DOI: https://doi.org/10.1016/B978-0-12-373624-6.X5000-0.

    Book  Google Scholar 

  5. H. Ochoa-Domínguez, K. R. Rao, Discrete Cosine Transform (CRC Press, Boca Raton, FL, 2019). DOI: https://doi.org/10.1201/9780203729854.

    Book  Google Scholar 

  6. D. Elliott, K. Rao, Fast Transforms Algorithms, Analyses, Applications (Academic Press, 1983). URI: https://www.elsevier.com/books/fast-transforms-algorithms-analyses-applications/elliott/978-0-08-091806-8.

    MATH  Google Scholar 

  7. B. Chitprasert, K. R. Rao, "Discrete cosine transform filtering," Signal Process., v.19, n.3, p.233 (1990). DOI: https://doi.org/10.1016/0165-1684(90)90115-F.

    Article  MathSciNet  MATH  Google Scholar 

  8. E. Armas Vega, A. Sandoval Orozco, L. García Villalba, J. Hernandez-Castro, "Digital Images Authentication Technique Based on DWT, DCT and Local Binary Patterns," Sensors, v.18, n.10, p.3372 (2018). DOI: https://doi.org/10.3390/s18103372.

    Article  Google Scholar 

  9. L. Krikor, S. Baba, T. Arif, Z. Shaaban, "Image Encryption Using DCT and Stream Cipher," Eur. J. Sci. Res., v.32, n.1, p.48 (2009).

    Google Scholar 

  10. L. Jing, C. He, L. Zhang, Q. Meng, J. Huang, Q. Zhang, "Iterative block decision feedback equalizer with soft detection for underwater acoustic channels," Dianzi Yu Xinxi Xuebao/Journal Electron. Inf. Technol., v.38, n.4, p.885 (2016). DOI: https://doi.org/10.11999/JEIT150669.

    Article  Google Scholar 

  11. J. Yang, T. Jin, C. Xiao, X. Huang, "Compressed Sensing Radar Imaging: Fundamentals, Challenges, and Advances," Sensors, v.19, n.14, p.3100 (2019). DOI: https://doi.org/10.3390/s19143100.

    Article  Google Scholar 

  12. C.-F. Lee, J.-J. Shen, Z.-R. Chen, S. Agrawal, "Self-Embedding Authentication Watermarking with Effective Tampered Location Detection and High-Quality Image Recovery," Sensors, v.19, n.10, p.2267 (2019). DOI: https://doi.org/10.3390/s19102267.

    Article  Google Scholar 

  13. W. Lu, Z. Chen, L. Li, X. Cao, J. Wei, N. Xiong, J. Li, J. Dang, "Watermarking Based on Compressive Sensing for Digital Speech Detection and Recovery," Sensors, v.18, n.7, p.2390 (2018). DOI: https://doi.org/10.3390/s18072390.

    Article  Google Scholar 

  14. K. Boukhechba, H. Wu, R. Bazine, "DCT-Based Preprocessing Approach for ICA in Hyperspectral Data Analysis," Sensors, v.18, n.4, p.1138 (2018). DOI: https://doi.org/10.3390/s18041138.

    Article  Google Scholar 

  15. P. Xu, B. Chen, L. Xue, J. Zhang, L. Zhu, "A Prediction-Based Spatial-Spectral Adaptive Hyperspectral Compressive Sensing Algorithm," Sensors, v.18, n.10, p.3289 (2018). DOI: https://doi.org/10.3390/s18103289.

    Article  Google Scholar 

  16. B.-S. Chow, "Data Compression by Shape Compensation for Mobile Video Sensors," Sensors, v.9, n.4, p.2461 (2009). DOI: https://doi.org/10.3390/s90402461.

    Article  Google Scholar 

  17. P. Christiansen, K. Steen, R. Jørgensen, H. Karstoft, "Automated Detection and Recognition of Wildlife Using Thermal Cameras," Sensors, v.14, n.8, p.13778 (2014). DOI: https://doi.org/10.3390/s140813778.

    Article  Google Scholar 

  18. Z. He, L. Jin, "Activity recognition from acceleration data based on discrete consine transform and SVM," in 2009 IEEE International Conference on Systems, Man and Cybernetics (IEEE, 2009). DOI: https://doi.org/10.1109/ICSMC.2009.5346042.

    Chapter  Google Scholar 

  19. D. C. Swanson, Signal Processing for Intelligent Sensor Systems with MATLAB® (CRC Press, 2011). URI: https://www.routledge.com/Signal-Processing-for-Intelligent-Sensor-Systems-with-MATLAB/Swanson/p/book/9781138075450.

    Book  Google Scholar 

  20. Y. A. Reznik, R. K. Chivukula, "Design of fast transforms for high-resolution image and video coding," in Proceedings of SPIE - The International Society for Optical Engineering (, 2009). DOI: https://doi.org/10.1117/12.831216.

    Chapter  Google Scholar 

  21. V. Britanak, K. R. Rao, Cosine-/Sine-Modulated Filter Banks (Springer International Publishing, Cham, 2018). DOI: https://doi.org/10.1007/978-3-319-61080-1.

    Book  MATH  Google Scholar 

  22. T. D. Tran, J. Liang, T. Chengjie, "Lapped transform via time-domain pre- and post-filtering," IEEE Trans. Signal Process., v.51, n.6, p.1557 (2003). DOI: https://doi.org/10.1109/TSP.2003.811222.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. K. Jain, "A Sinusoidal Family of Unitary Transforms," IEEE Trans. Pattern Anal. Mach. Intell., v.PAMI-1, n.4, p.356 (1979). DOI: https://doi.org/10.1109/TPAMI.1979.4766944.

    Article  MATH  Google Scholar 

  24. N. R. Murthy, M. N. S. Swamy, "On the on-line computation of DCT-IV and DST-IV transforms," IEEE Trans. Signal Process., v.43, n.5, p.1249 (1995). DOI: https://doi.org/10.1109/78.382409.

    Article  Google Scholar 

  25. Z. C. Li, "On computing the two-dimensional (2-D) type IV discrete cosine transform (2-D DCT-IV)," IEEE Signal Process. Lett., v.8, n.8, p.239 (2001). DOI: https://doi.org/10.1109/97.935741.

    Article  Google Scholar 

  26. Y. Zeng, Z. Lin, G. Bi, L. Cheng, "Fast Computation of MD-DCT-IV/MD-DST-IV by MD-DWT or MD-DCT-II," SIAM J. Sci. Comput., v.24, n.6, p.1903 (2003). DOI: https://doi.org/10.1137/S1064827501394830.

    Article  MathSciNet  MATH  Google Scholar 

  27. H.-W. Hsu, C.-M. Liu, "Fast Radix-q and Mixed-Radix Algorithms for Type-IV DCT," IEEE Signal Process. Lett., v.15, p.910 (2008). DOI: https://doi.org/10.1109/LSP.2008.2005441.

    Article  Google Scholar 

  28. X. Dai, M. Wagh, "Bilinear algorithms and VLSI implementations of forward and inverse MDCT with applications to MP3 audio," US Patent WO/2009/100021 (13-Aug-2009).

  29. V. Britanak, "Comments on Fast Radix-9 Algorithm for the DCT-IV Computation," IEEE Signal Process. Lett., v.16, n.11, p.1005 (2009). DOI: https://doi.org/10.1109/LSP.2009.2028450.

    Article  Google Scholar 

  30. X. Shao, S. G. Johnson, "Type-IV DCT, DST, and MDCT algorithms with reduced numbers of arithmetic operations," Signal Process., v.88, n.6, p.1313 (2008). DOI: https://doi.org/10.1016/j.sigpro.2007.11.024.

    Article  MATH  Google Scholar 

  31. V. Britanak, "The fast DCT-IV/DST-IV computation via the MDCT," Signal Process., v.83, n.8, p.1803 (2003). DOI: https://doi.org/10.1016/S0165-1684(03)00109-9.

    Article  MATH  Google Scholar 

  32. A. M. Grigoryan, M. M. Grigoryan, "A Novel Algorithm of The 4-Point Type-IV Discrete Cosine Transform" (2008). URL: http://fasttransforms.com.

  33. V. S. Shaptala, M. V. Korman, "DCT-IV computation," Pattern Recognit. Image Anal., v.18, n.1, p.58 (2008). DOI: https://doi.org/10.1134/S1054661808010070.

    Article  Google Scholar 

  34. S. M. Perera, "Signal Processing based on Stable radix-2 DCT I-IV Algorithms having Orthogonal Factors," Electron. J. Linear Algebr., v.31, n.1, p.362 (2016). DOI: https://doi.org/10.13001/1081-3810.3207.

    Article  MathSciNet  MATH  Google Scholar 

  35. X. Dai, M. D. Wagh, "An MDCT Hardware Accelerator for MP3 Audio," in 2008 Symposium on Application Specific Processors (IEEE, 2008). DOI: https://doi.org/10.1109/SASP.2008.4570796.

    Chapter  Google Scholar 

  36. D. Chiper, "A new VLSI algorithm and architecture for the hardware implementation of type IV discrete cosine transform using a pseudo-band correlation structure," Open Comput. Sci., v.1, n.2, p.243 (2011). DOI: https://doi.org/10.2478/s13537-011-0015-z.

    Article  MATH  Google Scholar 

  37. M. Garrido, O. Gustafsson, F. Qureshi, "Unified architecture for 2, 3, 4, 5, and 7-point DFTs based on Winograd Fourier transform algorithm," Electron. Lett., v.49, n.5, p.348 (2013). DOI: https://doi.org/10.1049/el.2012.0577.

    Article  Google Scholar 

  38. H. M. de Oliveira, R. J. Cintra, R. M. C. de Souza, "A Factorization Scheme for Some Discrete Hartley Transform Matrices," (2015). URI: http://arxiv.org/abs/1502.01038.

  39. A. Cariow, M. Makowska, P. Strzelec, "Small-Size FDCT/IDCT Algorithms with Reduced Multiplicative Complexity," Radioelectron. Commun. Syst., v.62, n.11, p.559 (2019). DOI: https://doi.org/10.3103/S0735272719110025.

    Article  Google Scholar 

  40. A. Cariow, J. Papliński, D. Majorkowska-Mech, "Some Structures of Parallel VLSI-Oriented Processing Units for Implementation of Small Size Discrete Fractional Fourier Transforms," Electronics, v.8, n.5, p.509 (2019). DOI: https://doi.org/10.3390/electronics8050509.

    Article  Google Scholar 

  41. A. Ţariov, D. Majorkowska-Mech, "The multilevel signal representation in discrete base of cosine functions," Elektronika, v.48, n.7, p.20 (2007).

    Google Scholar 

  42. A. Ţariov, Algorithmic Aspects of Computing Rationalization in Digital Signal Processing (West Pomeranian University Press, Szczecin, 2012).

    Google Scholar 

  43. A. Cariow, "Strategies for the Synthesis of Fast Algorithms for the Computation of the Matrix-vector Products," J. Signal Process. Theory Appl., n.3, p.1 (2014). DOI: https://doi.org/10.7726/jspta.2014.1001.

    Article  Google Scholar 

  44. J. Granata, M. Conner, R. Tolimieri, "The tensor product: a mathematical programming language for FFTs and other fast DSP operations," IEEE Signal Process. Mag., v.9, n.1, p.40 (1992). DOI: https://doi.org/10.1109/79.109206.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Cariow.

Ethics declarations

ADDITIONAL INFORMATION

Aleksandr Cariow and Łukasz Lesiecki

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020090022 with DOI: https://doi.org/10.20535/S0021347020090022

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cariow, A., Lesiecki, Ł. Small-Size Algorithms for Type-IV Discrete Cosine Transform with Reduced Multiplicative Complexity. Radioelectron.Commun.Syst. 63, 465–487 (2020). https://doi.org/10.3103/S0735272720090022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720090022

Navigation