Skip to main content
Log in

Method for Calculating Radiation Characteristics of Dual-Reflector Antennas with Resonance Size Reflectors of Finite Thickness and Conductivity

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper presents a method for calculating the radiation patterns (RP) of dual-reflector antenna systems taking into account the electrodynamic interaction between reflectors. This method is suitable for use in the resonance range of wavelengths with respect to the main dimensions of reflectors. The method is based on the iteration procedure proposed by the authors. Each iteration involves the use of the method for calculating the scattering of electromagnetic wave by unclosed screens of finite thickness and conductivity that is suitable for use in resonance range. The specified method is based on applying the E-field integral equation that takes into account the Leontovich approximate boundary conditions on impedance surface and makes it possible to take into account the real thickness and conductivity of antenna’s reflectors. The paper presents the results of calculating RP of dual-reflector antennas built in accordance with the Gregorian scheme for different sizes of small reflector aperture and different arrangements of feeder at the fixed size of large reflector. The paths of reducing the level of the first side lobes of RP are shown. The specified reduction is achieved at the expense of the feeder proper placing with respect to the small reflector of antenna.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. C. A. Balanis, Antenna Theory: Analysis and Design (Wiley, New Jersey, 2016). URI: https://www.wiley.com/en-us/Antenna+Theory%3A+Analysis+and+Design%2C+4th+Edition-p-9781118642061.

    Google Scholar 

  2. C. Granet, "Designing axially symmetric Cassegrain or Gregorian dual-reflector antennas from combinations of prescribed geometric parameters," IEEE Antennas Propag. Mag., v.40, n.2, p.76 (1998). DOI: https://doi.org/10.1109/74.683545.

    Article  Google Scholar 

  3. R. A. Penchel, S. R. Zang, J. R. Bergmann, F. J. S. Moreira, "Design of wideband omnidirectional dual-reflector antennas in millimeter waves," IEEE Antennas Wirel. Propag. Lett., v.18, n.5, p.906 (2019). DOI: https://doi.org/10.1109/LAWP.2019.2905602.

    Article  Google Scholar 

  4. K.-B. Kong, H.-S. Kim, R. S. Aziz, S.-O. Park, "Design of offset dual-reflector antennas for improving isolation level between transmitter and receiver antennas," Prog. Electromagn. Res. C, v.57, p.193 (2015). DOI: https://doi.org/10.2528/PIERC15041301.

    Article  Google Scholar 

  5. R. A. Penchel, S. R. Zang, J. R. Bergmann, F. J. S. Moreira, "GO shaping of omnidirectional dual-reflector antennas with arbitrary main-beam direction in elevation plane by connecting conic sections," Int. J. Antennas Propag., v.2018 (2018). DOI: https://doi.org/10.1155/2018/1409716.

    Article  Google Scholar 

  6. R. A. M. Pereira, N. B. Carvalho, J. P. Da Cunha, "Quasi-optical analysis of a double reflector microwave antenna system," Wirel. Power Transf., v.5, n.2, p.75 (2018). DOI: https://doi.org/10.1017/wpt.2017.19.

    Article  Google Scholar 

  7. M. R. Ahsan, M. T. Islam, Y. Yamada, N. Misran, "Ray tracing technique for shaping a dual reflector antenna system," Turkish J. Electr. Eng. Comput. Sci., n.24, p.1223 (2016). DOI: https://doi.org/10.3906/elk-1311-214.

    Article  Google Scholar 

  8. A. Haddadi, A. Ghorbani, "Distorted reflector antennas: Analysis of radiation pattern and polarization performance," IEEE Trans. Antennas Propag., v.64, n.10, p.4159 (2016). DOI: https://doi.org/10.1109/TAP.2016.2580157.

    Article  MathSciNet  MATH  Google Scholar 

  9. E. F. Knott, "Radar Cross Section," in Radar Handbook (McGraw-Hill Education, New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto, 2008). URI: https://www.accessengineeringlibrary.com/content/book/9780071485470/chapter/chapter14.

    Google Scholar 

  10. D. D. Ivanchenko, I. O. Sukharevsky, "Backscattering measurements for metallic unclosed spherical screens," Telecommun. Radio Eng. (English Transl. Elektrosvyaz Radiotekhnika), v.69, n.5, p.423 (2010). DOI: https://doi.org/10.1615/TelecomRadEng.v69.i5.50.

    Article  Google Scholar 

  11. I. O. Sukharevsky, S. V. Nechitaylo, D. D. Ivanchenko, P. N. Melezhik, "Electromagnetic wave scattering by a curved screen of finite thickness," Telecommun. Radio Eng. (English Transl. Elektrosvyaz Radiotekhnika), v.71, n.5, p.413 (2012). DOI: https://doi.org/10.1615/TelecomRadEng.v71.i5.30.

    Article  Google Scholar 

  12. S. Nechitaylo, V. Orlenko, O. Sukharevsky, V. Vasylets, "Electromagnetic wave scattering by a screen of finite thickness and conductivity," Telecommun. Radio Eng. (English Transl. Elektrosvyaz Radiotekhnika), v.77, n.16, p.1409 (2018). DOI: https://doi.org/10.1615/TelecomRadEng.v77.i16.20.

    Article  Google Scholar 

  13. W. V. T. Rusch, P. D. Potter, Analysis of Reflector Antennas (Academic Press, New York, 1970). URI: https://www.elsevier.com/books/analysis-of-reflector-antennas/rusch/978-0-12-603450-9.

    Google Scholar 

  14. S.-W. Lee, P. Cramer, K. Woo, Y. Rahmat-Samii, "Diffraction by an arbitrary subreflector: GTD solution," IEEE Trans. Antennas Propag., v.27, n.3, p.305 (1979). DOI: https://doi.org/10.1109/TAP.1979.1142096.

    Article  Google Scholar 

  15. A. W. Rudge, The Handbook of Antenna Design, Vol. 1 (Peter Peregrinus, London, 1982). URI: https://openlibrary.org/books/OL8292158M/The_Handbook_of_Antenna_Design_Vol._1_(Electromagnetic_Waves_Nos._15_16).

    Book  Google Scholar 

  16. O. I. Sukharevsky, G. S. Zalevsky, V. A. Vasilets, "Modeling of Ultrawideband (UWB) Impulse Scattering by Aerial and Subsurface Resonant Objects Based on Integral Equation Solving," in Advanced Ultrawideband Radar: Signals, Targets, and Applications (CRC Press, Boca Raton, 2016). DOI: https://doi.org/10.1201/9781315374130.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. I. Sukharevsky.

Ethics declarations

ADDITIONAL INFORMATION

O. I. Sukharevsky, S. V. Nechitaylo, V. A. Vasilets, and Ya. N. Kozhushko

The authors declare that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S002134702007002X with DOI: https://doi.org/10.20535/S002134702007002X

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sukharevsky, O.I., Nechitaylo, S.V., Vasilets, V.A. et al. Method for Calculating Radiation Characteristics of Dual-Reflector Antennas with Resonance Size Reflectors of Finite Thickness and Conductivity. Radioelectron.Commun.Syst. 63, 343–352 (2020). https://doi.org/10.3103/S073527272007002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527272007002X

Navigation