Skip to main content
Log in

Inverse Model of Human Lumbar Spine Based on CT Image and Finite Element Analysis

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In order to accurately analyze the most vulnerable fracture points of normal human lumbar vertebrae under upright position, walking and left-right rotation, the spiral computer tomography (CT) was used to scan the segment from the upper edge of lumbar vertebra L1 to the lower edge of lumbar vertebra L5. After reading CT images with Mimics software, the threshold analysis, area segmentation and the whole filling were carried out. The generated 3D geometric model was reconstructed using the Finite Element Analysis (FEA) module of Mimics, and the 3D lumbar model with intervertebral disc established by UG software was used. The model was imported into ANSYS Workbench for finite element analysis. The results showed that when the human body was upright, the displacement of the vertebral body was larger than that of the articular process. The displacement of the leading edge of the upper surface of the disc was the largest and equal to 0.161 mm. The equivalent stress is concentrated on the articular process and spinous process, and the stress on the lower articular process of the L4 is the largest (15.073 MPa) indicating that the relative error between the finite element analysis result and the theoretical calculation result is small. Hence, it proves that the method is correct and feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

References

  1. Y. Tao, Y. le Wu, S. hui Zong, K. ke Li, L. Du, X. ming Peng, X. zhi Shi, X. yuan Hu, "Biomechanical characteristics of lumbar vertebra fixation based on finite element analysis," Chinese J. Tissue Eng. Res., v.20, n.13, p.1932 (2016). DOI: https://doi.org/10.3969/j.issn.2095-4344.2016.13.015.

    Article  Google Scholar 

  2. V. Argesanu, R. M. Kulcsar, I. S. Borozan, M. Jula, F. Streian, A. Z. Farkas, C. Sticlaru, "Highlighting the maxillofacial trauma influence on posture by FEA modeling simulation," in SISY 2016 - IEEE 14th International Symposium on Intelligent Systems and Informatics, Proceedings (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/SISY.2016.7601484.

    Chapter  Google Scholar 

  3. H. Li, F. Li, N. Liu, P. Li, "Risk prediction of femoral head necrosis: a finite element analysis based on fracture mechanics," Int. J. Comput. Methods, v.17, n.6 (2020). DOI: https://doi.org/10.1142/S0219876219500191.

    Article  MathSciNet  MATH  Google Scholar 

  4. H. M. Xu, S. L. Pu, Y. G. Jiang, X. Y. Li, P. Dong, "Establishment and preliminary application of a laryngomalacia larynx three-dimension model," Lin chuang er bi yan hou tou jing wai ke za zhi = J. Clin. Otorhinolaryngol. head, neck Surg., v.32, n.12, p.891 (2018). DOI: https://doi.org/10.13201/j.issn.1001-1781.2018.12.003.

    Article  Google Scholar 

  5. Y. Sun, H. Chen, Y. Sun, Q. Zhang, Y. Hu, "Deformation analysis of lumbar spine based on mechanics of materials and finite element method," in 2017 IEEE International Conference on Robotics and Biomimetics, ROBIO 2017 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/ROBIO.2017.8324606.

    Chapter  Google Scholar 

  6. I. A. Sushko, "Visualization of surface conductivity distributions of tomography cross-section using conductivity zones method," Radioelectron. Commun. Syst., v.56, n.7, p.377 (2013). DOI: https://doi.org/10.3103/S0735272713070078.

    Article  Google Scholar 

  7. H. Luo, G. Liu, J. Fu, C. Yu, "Vibration response analysis of the lumbar spine based on high-speed train crew," in 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems, CYBER 2017 (Institute of Electrical and Electronics Engineers Inc.). DOI: https://doi.org/10.1109/CYBER.2017.8446591.

    Chapter  Google Scholar 

  8. J. P. Gjolaj, S. Elmasry, S. Asfour, F. Travascio, F. J. Eismont, "Implications of decompressive surgical procedures for lumbar spine stenosis on the biomechanics of the adjacent segment: a finite element analysis," Spine J., v.15, n.10, p.S96 (2015). DOI: https://doi.org/10.1016/j.spinee.2015.07.039.

    Article  Google Scholar 

  9. Z. Zhang, Y. Li, Z. Liao, W. Liu, "Research progress and prospect of applications of finite element method in lumbar spine biomechanics," Sheng wu yi xue gong cheng xue za zhi = J. Biomed. Eng. = Shengwu yixue gongchengxue zazhi, v.33, n.6, p.1196 (2016). URI: https://pubmed.ncbi.nlm.nih.gov/29715419/.

    Google Scholar 

  10. Q. H. Zhang, E. C. Teo, "Finite element application in implant research for treatment of lumbar degenerative disc disease," Med. Eng. Phys., v.30, n.10, p.1246 (2008). DOI: https://doi.org/10.1016/j.medengphy.2008.07.012.

    Article  Google Scholar 

  11. C. Yaldiz, B. Ozkal, Y. Guvenc, S. Senturk, D. Erbulut, I. Zafarparandah, O. Yaman, I. Solaroglu, F. Ozer, "Comparison of the rigid rod system with modular plate with the finite element analysis in short-segment posterior stabilization in the lower lumbar region," Turkish Neurosurg., v.27, n.4, p.610 (2017). DOI: https://doi.org/10.5137/1019-5149.JTN.16203-15.1.

    Article  Google Scholar 

  12. E. Punarselvam, P. Suresh, "Investigation on human lumbar spine MRI image using finite element method and soft computing techniques," Clust. Comput., v.22, n.6, p.13591 (2019). DOI: https://doi.org/10.1007/s10586-018-2019-0.

    Article  Google Scholar 

  13. D. S. Shin, K. Lee, D. Kim, "Biomechanical study of lumbar spine with dynamic stabilization device using finite element method," CAD Comput. Aided Des., v.39, n.7, p.559 (2007). DOI: https://doi.org/10.1016/j.cad.2007.03.005.

    Article  Google Scholar 

  14. M. V. Kononov, O. A. Nagulyak, A. V. Netreba, A. A. Sudakov, "Reconstruction in NMR by the method of signal matrix pseudoinversion," Radioelectron. Commun. Syst., v.51, n.10, p.531 (2008). DOI: https://doi.org/10.3103/S0735272708100038.

    Article  Google Scholar 

  15. Y. Guo, G. Song, "Ergonomic seat design based on high-speed rail random vibration environment effects on human lumbar," Zhongguo Jixie Gongcheng/China Mech. Eng., v.26, n.3, p.389 (2015). DOI: https://doi.org/10.3969/j.issn.1004-132X.2015.03.018.

    Article  Google Scholar 

  16. A. Tsouknidas, K. Anagnostidis, G. Maliaris, N. Michailidis, "Fracture risk in the femoral hip region: A finite element analysis supported experimental approach," J. Biomech., v.45, n.11, p.1959 (2012). DOI: https://doi.org/10.1016/j.jbiomech.2012.05.011.

    Article  Google Scholar 

  17. J. M. Liu, Y. Zhang, Y. Zhou, X. Y. Chen, S. H. Huang, Z. K. Hua, Z. L. Liu, "The effect of screw tunnels on the biomechanical stability of vertebral body after pedicle screws removal: a finite element analysis," Int. Orthop., v.41, n.6, p.1183 (2017). DOI: https://doi.org/10.1007/s00264-017-3453-y.

    Article  Google Scholar 

  18. K. Li, J. Zhang, J. Jiang, S. Ma, "Lumbar spinal finite element analysis in a gravity environment," in Eighth International Conference on Digital Image Processing (ICDIP 2016) (SPIE). DOI: https://doi.org/10.1117/12.2244610.

    Chapter  Google Scholar 

  19. M. V. Kononov, O. A. Nagulyak, A. V. Netreba, "Influence of X-radiation in receiver system on reconstruction performance of projection tomography," Radioelectron. Commun. Syst., v.51, n.3, p.163 (2008). DOI: https://doi.org/10.3103/S0735272708030084.

    Article  Google Scholar 

  20. X. Wang, A. Sanyal, P. M. Cawthon, L. Palermo, M. Jekir, J. Christensen, K. E. Ensrud, S. R. Cummings, E. Orwoll, D. M. Black, T. M. Keaveny, "Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans," J. Bone Miner. Res., v.27, n.4, p.808 (2012). DOI: https://doi.org/10.1002/jbmr.1539.

    Article  Google Scholar 

  21. D. H. Pahr, P. K. Zysset, "Finite element-based mechanical assessment of bone quality on the basis of in vivo images," Curr. Osteoporos. Reports, v.14, n.6, p.374 (2016). DOI: https://doi.org/10.1007/s11914-016-0335-y.

    Article  Google Scholar 

Download references

Acknowledgements

Preliminary materials of this article were reported at the conference Futuristic Trends in Networks and Computing Technologies FTNCT (Nagar, 2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Gao.

Ethics declarations

ADDITIONAL INFORMATION

Peng Gao

The author declares that they have no conflict of interest.

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347020060059 with DOI: https://doi.org/10.20535/S0021347020060059

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, P. Inverse Model of Human Lumbar Spine Based on CT Image and Finite Element Analysis. Radioelectron.Commun.Syst. 63, 319–327 (2020). https://doi.org/10.3103/S0735272720060059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272720060059

Navigation