Advertisement

Radioelectronics and Communications Systems

, Volume 62, Issue 7, pp 342–355 | Cite as

Adaptive Algorithm of Maneuvering Target Tracking in Complex Jamming Situation for Multifunctional Radar with Phased Antenna Array

  • T. V. BaringoltsEmail author
  • D. V. Domin
  • S. Ya. ZhukEmail author
  • V. V. Tsisarzh
Article
  • 7 Downloads

Abstract

Adaptive multimodel algorithms based on the target movement model in the form of discrete stochastic dynamic system with random structure are adequate to the problem of target tracking based on data of the multifunctional radar station (MFRS) with phased antenna array (PAA) under conditions of complex dynamically varying signal and jamming situation. This study presents an optimal and quasioptimal algorithms of adaptive estimation of movement parameters of maneuvering targets in the Cartesian coordinate system for MFRS with PAA based on the mathematical tools of mixed Markov processes in discrete time. They describe the evolution of joint a posteriori probability density of the vector of target movement parameters and switching variable determining the mode of its movement, while the filters implementing them are referred to the class of devices with feedbacks between channels. The identification of blips in the tracking strobe is performed in the spherical coordinate system by selecting the blip, which is the closest to the strobe center. The efficiency analysis of the developed tracking algorithm is performed by using the test paths of two targets with different intensities of the maneuver and parameters of tracking modes. The accuracy characteristics of adaptive filter and indicators of the tracking efficiency at different false alarm probabilities have been determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. S. Verba, Air Radar Surveillance and Guidance Complexes. The State of Art and Development Trends [in Russian] (Radiotekhnika, Moscow, 2008).Google Scholar
  2. 2.
    V. I. Gouz, V. P. Lipatov, T. V. Baringolts, S. S. Bilokoz, E. V. Smertenko, L. B. Subbotina, V. V. Torhonskyy, “Design concepts of complex information processing systems with data from many different-type sources located at one or several mobile platforms,” Radioelectron. Commun. Syst. 55, No. 1, 1 (2012). DOI:  https://doi.org/10.3103/S0735272712010013.CrossRefGoogle Scholar
  3. 3.
    M. Balinin, A. Dalandin, “State of the art and development prospects of ground distant early warning radars,” Zarubezhnoye Voyennoye Obozreniye, No. 1, 69 (2016).Google Scholar
  4. 4.
    V. I. Gouz, A. V. Butyrin, V. P. Lipatov, T. V. Baringolts, “Adaptive control of distribution of the energy and time resource of radar systems with phased antenna array,” Radioelectron. Commun. Syst. 50, No. 2, 55 (2007). DOI:  https://doi.org/10.3103/S073527270702001X.CrossRefGoogle Scholar
  5. 5.
    M. Schikorr, U. Fuchs, M. Bockmair, “Radar resource management study for multifunction phased array radar,” Proc. of 2016 European Radar Conf., EuRAD, 5–7 Oct. 2016, London, UK (IEEE, 2016), pp. 213–216. URI: https://ieeexplore.ieee.org/document/7811685.Google Scholar
  6. 6.
    H.-W. Zhang, J.-W. Xie, W.-L. Lu, C. Sheng, B.-F. Zong, “A scheduling method based on a hybrid genetic particle swarm algorithm for multifunction phased array radar,” Frontiers Inf. Technol. Electronic Engineering 18, No. 11, 1806 (2017). DOI:  https://doi.org/10.1631/fitee.1601358.CrossRefGoogle Scholar
  7. 7.
    M. S. Alahmadi, G. E. Smith, C. J. Baker, “A recursive approach for adaptive parameters selection in a multifunction radar,” Proc. of 2016 IEEE Radar Conf., RadarConf, 2–6 May 2016, Philadelphia, USA (IEEE, 2016). DOI:  https://doi.org/10.1109/radar.2016.7485148.Google Scholar
  8. 8.
    O. L. Smirnov, O. N. Stavitskiy, A. A. Nakonechnyi, “Adaptive control of tracking mode parameters of a multi-function radar,” Science and Technologies of Air Forces of Armed Forces of Ukraine, No. 1, 71 (2017). DOI:  https://doi.org/10.30748/nitps.2017.26.15.Google Scholar
  9. 9.
    A. A. Konovalov, Essentials of Trajectory Processing of Radar Information, Part 2 [in Russian] (LETI, St. Petersburg, 2014).Google Scholar
  10. 10.
    X. Rong Li, V. P. Jilkov, “Survey of maneuvering target tracking. Part V. Multiple-model methods,” IEEE Trans. Aerospace Electron. Syst. 41, No. 4, 1255 (2005). DOI:  https://doi.org/10.1109/TAES.2005.1561886.CrossRefGoogle Scholar
  11. 11.
    D. K. Barton, Radar System Analysis and Modelling (Artech House, Inc., Norwood, MA, 2005).Google Scholar
  12. 12.
    V. I. Gouz, A. V. Butyrin, T. V. Baringolts, L. B. Subbotina, “Peculiarities of airway processing when tracking air targets observed at small elevation over underlying surface,” Radioelectron. Commun. Syst. 50, No. 1, 9 (2007). DOI:  https://doi.org/10.3103/S0735272707010025.CrossRefGoogle Scholar
  13. 13.
    Y. Bar-Shalom, Xiao-Rong Li, Estimation and Tracking: Principles, Techniques, and Software (YBS Pub., 1998).zbMATHGoogle Scholar
  14. 14.
    S. Blackman, R. Popoli, Design and Analysis of Modern Tracking Systems (Artech House, Boston, 1999).zbMATHGoogle Scholar
  15. 15.
    S. Ya. Zhuk, “Joint filtering of mixed Markov processes in discrete time,” Radioelectron. Commun. Syst. 31, No. 1, 29 (1988). URI: http://radioelektronika.org/article/view/S073527271988010066.Google Scholar
  16. 16.
    S. Z. Kuz’min, Digital Radiolocation. Introduction to the Theory [in Russian] (KViTs, Kyiv, 2000).Google Scholar
  17. 17.
    A. Farina, F. A. Studer, Radar Data Processing. Vol. I: Introduction and Tracking (Wiley, 1985).Google Scholar
  18. 18.
    H. You, X. Jianjuan, G. Xin, Radar Data Processing with Applications (John Wiley & Sons Singapore Pte. Ltd., 2016). DOI:  https://doi.org/10.1002/9781118956878.CrossRefGoogle Scholar
  19. 19.
    V. I. Merkulov, V. S. Verba, A. R. Il’chuk, A. P. Kirsanov, Automatic Target Tracking in Radars of Integrated Air Complexes. Multitarget Tracking, Part 3 [in Russian] (Radiotekhnika, Moscow, 2018).Google Scholar
  20. 20.
    S. Ya. Zhuk, I. O. Tovkach, Yu. Yu. Reutska, “Adaptive filtration of radio source movement parameters based on sensor network TDOA measurements in presence of anomalous measurements,” Radioelectron. Commun. Syst. 62, No. 2, 61 (2019). DOI:  https://doi.org/10.3103/S073527271902002X.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Kvant Radar Systems Scientific Research InstituteKyivUkraine
  2. 2.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations