Skip to main content
Log in

Protection of Coherent Pulse Radars against Combined Interferences. 1. Modifications of STSP Systems and their Ultimate Performance Capabilities

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This paper is the first paper of the sequence devoted to modern methods of protection of coherent pulse radars against combined interferences (additive internal noise mixture masking the active jamming and clutter (passive jamming)). It compares the ultimate capabilities of the known and relatively new varieties of the interference protection (anti-jam and anti-clutter) systems under the hypothetical conditions of exact knowledge of statistical characteristics of signals and interferences. The ultimate capabilities of systems are understood in the sense that their efficiency is calculated for the hypothetical conditions of exact knowledge of statistical characteristics of input actions. The obtained estimates determine the upper bounds of efficiency in the real conditions of a priori uncertainty of parameters of signals and interferences. The losses of efficiency related to the transition to simplified systems of space-time signal processing (STSP) are also analyzed. The second paper deals with peculiarities (high-speed) of the considered anti-jam and anti-clutter systems in real conditions of parametric a priori uncertainty that is overcome by using different kinds of estimates of a priori unknown parameters of interferences. The third paper is devoted to the substantiation of general-purpose STSP system based on adaptive lattice filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. D. Shirman (ed.), Radioelectronic Systems: Fundamentals of Construction and Theory, Handbook, 2nd ed. [in Russian] (Radiotekhnika, Moscow, 2007).

    Google Scholar 

  2. J. Ward, “Space-time adaptive processing for airborne radar,” Technical Report No. 1015, Massachusetts Institute of Technology, Lincoln Laboratory (Dec. 1994).

    Google Scholar 

  3. R. Klemm, Space-Time Adaptive Processing — Principles and Applications, 1st ed. (UK, IEE, Stevenage, Herts., 1998).

    Google Scholar 

  4. R. Klemm, Principles of Space-Time Adaptive Processing, 3rd ed. in: Radar, Sonar, Navigation and Avionics Series 21, The Institution of Electrical Engineers and Technology (UK, 2006). DOI: https://doi.org/10.1049/PBRA021E.

    Google Scholar 

  5. W.-D. Wirth, Radar Techniques Using Array Antennas, in: IET Radar, Sonar, Navigation and Avionics Series 10, The Institution of Engineering and Technology (UK, 2013). DOI: https://doi.org/10.1049/PBRA026E.

    Google Scholar 

  6. J. R. Guerci, Space-Time Adaptive Processing for Radar, 2nd ed. (Artech House, Boston-London, 2014).

    Google Scholar 

  7. W. L. Melvin, “Chapter 12 - Space-time adaptive processing for radar,” Academic Press Library in Signal Processing 2, 595 (2014). DOI: https://doi.org/10.1016/B978-0-12-396500-4.00012-0.

    Article  Google Scholar 

  8. Bernard Widrow, Samuel D. Stearns, Adaptive Signal Processing (Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1985).

    MATH  Google Scholar 

  9. Robert A. Monzingo, Randy L. Haupt, Thomas W. Miller, Introduction to Adaptive Arrays, 2nd ed. (NC 27615, SciTech Publishing, Inc. Raleigh, 2011). DOI: https://doi.org/10.1049/SBEW046E.

    Google Scholar 

  10. C. Wortham, Space-Time Adaptive Processing for Ground Surveillance Radar (Georgia Institute of Technology, May 2007).

    Google Scholar 

  11. Jingwei Xu, Shengqi Zhu, Guisheng Liao, “Space-time-range adaptive processing for airborne radar systems,” IEEE Sensors J. 15, No. 3, 1602 (Mar 2015). DOI: https://doi.org/10.1109/JSEN.2014.2364594.

    Article  Google Scholar 

  12. Tamas Peto, Rudolf Seller, “Space-time adaptive cancellation in passive radar systems,” Int. J. Antennas Propag. 2018, Article ID 2467673 (2018). DOI: https://doi.org/10.1155/2018/2467673.

  13. V. Navratil, A. O’Brien, J. Landon Garry, G. E. Smith, “Demonstration of space-time adaptive processing for DSI suppression in a passive radar,” Proc. of 18th Int. Radar Symp., IRS, 28–30 June 2017, Prague, Czech Republic (IEEE, 2017). DOI: https://doi.org/10.23919/IRS.2017.8008146.

    Google Scholar 

  14. A. P. Lukoshkin, S. S. Karpinskii, A. A. Shatalov, et al., Signal Processing in Multichannel Radars [in Russian, ed. by A. P. Lukoshkin] (Radio i Svyaz’, Moscow, 1983).

  15. V. I. Samoilenko, I. V. Grubrin, “Adaptive space-time noise filtration in multichannel systems,” Radioelectron. Commun. Syst. 28, No. 9, 10 (1985).

    Google Scholar 

  16. V. I. Samoilenko, I. V. Grubrin, “Joint adaptation of space and time filters in multichannel systems,” Radiotekh. Elektron. 34, No. 4, 749 (1989).

    Google Scholar 

  17. V. G. Andrejev, T. P. Nguyen, “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst. 58, No. 2, 85 (2015). DOI: https://doi.org/10.3103/S0735272715020053.

    Article  Google Scholar 

  18. V. A. Gandurin, A. A. Trofimov, M. I. Chernyshev, “Structure and algorithms of space-time processing of signals in pulse-Doppler surveillance patrol radar on board aircraft,” Radiotekhnika, No. 8, 90 (2009).

    Google Scholar 

  19. R. S. Tikhonov, “Space-time adaptive processing for forward-looking airborne radar,” Radiotekhnika, No. 12, 64 (2014). URI: http://www.radiotec.ru/article/15632#english.

    Google Scholar 

  20. R. S. Tikhonov, “Influence of the training set non-homogeneity on space-time adaptive processing performance in airborne pulse-Dopler radar,” Trudy MAI, No. 79, 1 (2015). URI: http://trudymai.ru/eng/published.php?ID=55772.

    Google Scholar 

  21. A. K. Zhuravlev, V. A. Khlebnikov, A. P. Rodimov, et al., Adaptive Radio Technical Systems with Antenna Arrays [in Russian] (Izd. Leningradskogo Universiteta, Leningrad, 1991).

    Google Scholar 

  22. D. I. Lekhovytskiy, A. V. Mezentsev, V. M. Tkachenko, “Efficiency of system of sequential radar protection against the combined interferences with introduction of frequency-shifted receiving channels,” Sb. Nauch. Tr. KhVU, No. 3, 25 (1995).

    Google Scholar 

  23. D. I. Lekhovytskiy, A. V. Mezentsev, V. M. Tkachenko, “Protection device against combined interferences,” UA Patent No. 14711, IPC G01S 7/38 (15 Jan. 1997).

    Google Scholar 

  24. V. D. Anokhin, S. Fauzi, V. G. Kil’dyushevskaya, “Processing of radar signals against the background of combined interferences,” Radiotekhnika, No. 5, 133 (2009).

    Google Scholar 

  25. D. M. Piza and A. P. Zalevskiy, “Specificities of Adaptation of Spatial Filters in Case of Influence of Combined Interferences,” Radioelektronika. Informatika. Upravlenie, No. 1, 45 (2005).

    Google Scholar 

  26. A. P. Zalevsky, D. M. Piza, I. S. Presniak, A. S. Sirenko, “Coherent-pulse radar signals space-time and time-space filtering performance evaluation,” Radio Electronics, Computer Science, Control, No. 2, 39 (2012). DOI: https://doi.org/10.15588/1607-3274-2012-2-7.

    Google Scholar 

  27. V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, Y. A. Katiushyn, “Estimation of spatial weight vector fixation interval for sequential space-time signal processing against the background of combined interferences,” Radioelectron. Commun. Syst. 55, No. 10, 443 (2012). DOI: https://doi.org/10.3103/S0735272712100020.

    Article  Google Scholar 

  28. I. V. Grubrin, I. U. Ligina, “Adaptive interference filtering in the multi-channel on-board systems,” Trudy MAI, No. 69, 1 (2013). URI: http://trudymai.ru/eng/published.php/published.php?ID=43335.

    Google Scholar 

  29. V. A. Grigor’ev, Combined Processing of Signals in Radio Communication Systems [in Russian] (Eko-Trends, Moscow, 2002).

    Google Scholar 

  30. D. M. Piza, Y. A. Zviahintsev, G. V. Moroz, “Method of compensating the active component of combined interference in coherent pulse radar,” Radioelectron. Commun. Syst. 59, No. 6, 251 (2016). DOI: https://doi.org/10.3103/S0735272716060030.

    Article  Google Scholar 

  31. D. M. Piza, D. S. Semenov, G. V. Moroz, “Analysis of efficiency of adaptive polarizing filter under the simultaneous action of active and passive noise,” Radio Electronics, Computer Science, Control, No. 3, 20 (2017). DOI: https://doi.org/10.15588/1607-3274-2017-3-2.

    Google Scholar 

  32. D. M. Piza, V. N. Lavrentiev, D. S. Semenov, “Method of forming of the classified training sample for automatic canceller of the interferences when using time-space filtering of signals,” Radio Electronics, Computer Science, Control, No. 3, 18 (2016). DOI: https://doi.org/10.15588/1607-3274-2016-3-2.

    Google Scholar 

  33. D. M. Piza, G. V. Moroz, “Methods of forming classified training sample for adaptation of weight coefficient of automatic interference compensator,” Radioelectron. Commun. Syst. 61, No. 1, 32 (2018). DOI: https://doi.org/10.3103/S0735272718010041.

    Article  Google Scholar 

  34. D. M. Piza, T. I. Bugrova, V. M. Lavrentiev, D. S. Semenov, “Selector of classified training samples for spatial processing of signals under the impact of combined clutter and jamming,” Radio Electronics, Computer Science, Control, No. 4, 26 (2017). DOI: https://doi.org/10.15588/1607-3274-2017-4-3.

    Google Scholar 

  35. D. M. Piza, S. N. Romanenko, D. S. Semenov, “Correlation method for forming the training sample for adaptation of the spatial filter,” Radio Electronics, Computer Science, Control, No. 3, 34 (2018). DOI: https://doi.org/10.15588/1607-3274-2018-3-4.

    Google Scholar 

  36. D. M. Piza, T. I. Bugrova, V. N. Lavrentiev, D. S. Semenov, “Method of forming classified training sample in case of spatial signal processing under influence of combined interference,” Radioelectron. Commun. Syst. 61, No. 7, 325 (2018). DOI: https://doi.org/10.3103/S0735272718070051.

    Article  Google Scholar 

  37. Ting Wang, Yongjun Zhao, Jie Huang, Ke Jin, Kunfan Zhang, “A reduced-rank STAP algorithm for simultaneous clutter plus jamming suppression in airborne MIMO radar,” Proc. of 18th Int. Radar Symp., IRS, 28–30 June 2017, Prague, Czech Republic (IEEE, 2017). DOI: https://doi.org/10.23919/IRS.2017.8008095.

    Google Scholar 

  38. Yu. I. Abramovich, V. G. Kachur, “Methods of alternate adaptive tuning of separate interference compensation systems,” J. Commun. Technol. Electron. 32, No. 10, 124 (1987).

    Google Scholar 

  39. Yu. I. Abramovich, V. G. Kachur, “Speed of response of alternate adaptive tuning of separate combined interference suppression systems,” J. Commun. Technol. Electron. 34, No. 12, 44 (1989).

    Google Scholar 

  40. R. Bellman, Introduction to Matrix Analysis, 2ed. (Society for Industrial and Applied Mathematics, 1997). DOI: https://doi.org/10.1137/1.9781611971170.

    MATH  Google Scholar 

  41. I. Stanimirovic, Computation of Generalized Matrix Inverses and Applications (Apple Academic Press, Waretown, NJ, 2017).

    MATH  Google Scholar 

  42. M. Skolnik, Radar Handbook, 3rd ed. (McGraw-Hill, New York, 2008).

    Google Scholar 

  43. Gwilym M. Jenkins, Donald G. Watts, Spectral Analysis and Its Applications (Holden-Day, San Francisco, 1968).

    MATH  Google Scholar 

  44. D. I. Lekhovytskiy, I. G. Kirillov, “Simulation of clutter by using pulse radar on the basis of processes of autoregression of an arbitrary order,” Syst. Obrob. Inf., No. 3, 90 (2008).

    Google Scholar 

  45. P. E. Gill, W. Murray (eds.), Numerical Methods for Constrained Optimization (London, Academic Press, 1974).

    Google Scholar 

  46. J. R. Rice, Matrix Calculations and Mathematical Software (McGraw-Hill, 1981).

    MATH  Google Scholar 

  47. V. V. Voevodin, E. E. Tyrtyshnikov, Computational Processes with Toeplitz Matrices [in Russian] (Nauka, Moscow, 1987).

    MATH  Google Scholar 

  48. D. I. Lekhovytskiy, “Generalized Levinson algorithm and universal lattice filters,” Radiophys. Quantum Electron. 35, No. 9–10, 509 (1992). DOI: https://doi.org/10.1007/BF01044971.

    MathSciNet  Google Scholar 

  49. J. P. Burg, “A new analysis technique for time series data,” NATO Advanced Study Institute on Signal Processing with Emphasis on Underwater Acoustics (Netherlands, 12–23 Aug. 1968).

    Google Scholar 

  50. F. Itakura, S. Saito, “Digital filtering techniques for speech analysis and synthesis,” Proc. of 7th Int. Congress Acoust., 1971, Budapest, Hungary. Budapest, Paper 25 C-I (1971), pp. 261–264.

    Google Scholar 

  51. B. Friedlander, “Lattice filters for adaptive processing,” Proc. IEEE 70, No. 8, 829 (1982). DOI: https://doi.org/10.1109/PROC.1982.12407.

    Article  Google Scholar 

  52. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, V. P. Riabukha, D. V. Atamanskiy, “Adaptive lattice filters. Part I. Theory of lattice structures,” Prikladnaya Radioelektronika 10, No. 4, 380 (2011).

    Google Scholar 

  53. D. I. Lekhovytskiy, Y. I. Abramovich, “Adaptive lattice filters for band-inverse (TVAR) covariance matrix approximations: theory and practical applications,” in: Proc. of 2009 Int. Radar Symp., IRS 2009, Hamburg, Germany (TUHH, Hamburg, 2009), pp. 535–539.

    Google Scholar 

  54. W.-H. Yang, S. H. Holan, C. K. Wikle, “Bayesian lattice filters for time-varying autoregression and time-frequency analysis,” Bayesian Analysis 11, No. 4, 977 (2016). DOI: https://doi.org/10.1214/15-BA978.

    Article  MathSciNet  MATH  Google Scholar 

  55. M. T. Ozden, “Sequential convex combinations of multiple adaptive lattice filters in cognitive radio channel identification,” EURASIP J. Adv. Signal Process. 2018:45, 25 (2018). DOI: https://doi.org/10.1186/s13634-018-0567-3.

    Google Scholar 

  56. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, “K-rank modification of adaptive lattice filter parameters,” Proc. of 2015 IEEE Radar Conf., RadarCon, 10–15 May 2015, Arlington, USA (IEEE, 2015). DOI: https://doi.org/10.1109/RADAR.2015.7130983.

    Google Scholar 

  57. H. Lev-Ari, T. Kailath, “Schur and Levinson algorithms for nonstationary processes,” Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’81, 30 Mar.–1 Apr. 1981, Atlanta, USA (IEEE, 1981). DOI: https://doi.org/10.1109/ICASSP.1981.1171194.

    Google Scholar 

  58. K. C. Sharman, T. S. Durrani, “Spatial lattice filter for high-resolution spectral analysis of array data,” IEE Proc. F - Commun., Radar and Signal Process. 130, No. 3, 279 (1983). DOI: https://doi.org/10.1049/ip-f-1.1983.0047.

    Article  Google Scholar 

  59. H.-G. Beyer, B. Sendhoff, “Simplify your covariance matrix adaptation evolution strategy,” IEEE Trans. Evol. Comput. 21, No. 5, 746 (2017). DOI: https://doi.org/10.1109/TEVC.2017.2680320.

    Article  Google Scholar 

  60. A. De Maio, D. Orlando, “An invariant approach to adaptive radar detection under covariance persymmetry,” IEEE Trans. Signal Process. 63, No. 5, 1297 (2015). DOI: https://doi.org/10.1109/TSP.2014.2388441.

    Article  MathSciNet  MATH  Google Scholar 

  61. D. I. Lekhovytskiy, D. S. Rachkov, A. V. Semeniaka, D. V. Atamanskiy, V. P. Riabukha, “Quasioptimal algorithms for batch coherent signals interperiod processing against background clutter,” Proc. of Int. Radar Symp., IRS-2014, 16–18 June 2014, Gdansk, Poland (IEEE, 2014), pp. 25–30. DOI: https://doi.org/10.1109/IRS.2014.6869195.

    Google Scholar 

  62. D. I. Lekhovytskiy, D. V. Atamanskiy, V. P. Riabukha, D. S. Rachkov, A. V. Semeniaka, “Combining target detection against the background of jamming signals and jamming signal DOA estimation,” Proc. of X Int. Conf. on Antenna Theory and Techniques, ICATT’2015, 21–24 Apr. 2015, Kharkiv, Ukraine (IEEE, 2015), pp. 36–40. DOI: https://doi.org/10.1109/ICATT.2015.7136777.

    Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere gratitude to professor Yu. I. Abramovich for his attention to their work, useful advices and comments that contributed to improvement of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. I. Lekhovytskiy.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 7, pp. 380–412.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lekhovytskiy, D.I., Riabukha, V.P., Semeniaka, A.V. et al. Protection of Coherent Pulse Radars against Combined Interferences. 1. Modifications of STSP Systems and their Ultimate Performance Capabilities. Radioelectron.Commun.Syst. 62, 311–341 (2019). https://doi.org/10.3103/S073527271907001X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527271907001X

Navigation