Skip to main content
Log in

Research on Potentialities of Audio Information Recovery from Video Without Audio Track

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The article analyzed the possibility of the appearance of an acoustic information leakage channel that is formed by analyzing the video stream on the video record. The authors investigated the possibilities of speech recovery from a low quality recording, determined by the signal-to-noise ratio (SNR), sampling frequency, number of quantization levels, and clipping level, taking into account the features of the leakage channel under study. As a result, the required frame rate of the video image, the minimum SNR, the number of quantization levels, and a sufficient dynamic displacement range of the oscillating object are determined. The authors also investigated the requirements for the leakage channel parameters and possible ways for an attacker to improve its quality. The requirements for the displacement of an object oscillating under the action of acoustic waves in a video were calculated. The article justified the potential of reducing the requirements for the displacement of an object by applying averaging of a large number of different points on the object. The authors performed an assessment of the existing noise reduction software for sound recordings, which is used to increase the intelligibility of the message that is intercepted by the attacker in the considered information leakage channel. Obtained results revealed that there are potential causes for the leakage of acoustic information by analyzing the video stream on the video. The conditions for the emergence of such a channel are not excessive. Therefore, the possibility of its appearance is a security risk and it is necessary to provide the means to protect the object of information activity from it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Oleynikov, A. N. Shirokiy, “Mathematical modeling of the acoustic channel of voice information leakage,” Radiotekhnika (Kharkiv), No. 177, 161 (2014). URI: http://nure.ua/wp-content/uploads/2014/Scientific_editions/177/26.pdf.

    Google Scholar 

  2. N. Granzotto, F. Bettarello, A. Ferluga, L. Marsich, C. Schmid, P. Fausti, M. Caniato, “Energy and acoustic performances of windows and their correlation,” Energy Buildings 136, 189 (2017). DOI: 10.1016/j.enbuild.2016.12.024.

    Article  Google Scholar 

  3. A. Teter, Ja. Gawryluk, “Experimental modal analysis of a rotor with active composite blades,” Composite Structures 153, 451 (2016). DOI: 10.1016/j.compstruct.2016.06.013.

    Article  Google Scholar 

  4. S. J. Rothberg, M. S. Allen, P. Castellini, D. Di Maio, J. J. J. Dirckx, D. J. Ewins, B. J. Halkon, P. Muyshondt, N. Paone, T. Ryan, H. Steger, E. P. Tomasini, S. Vanlanduit, J. F. Vignola, “An international review of laser Doppler vibrometry: Making light work of vibration measurement,” Optics Lasers Engineering 99, 11 (2017). DOI: 10.1016/j.optlaseng.2016.10.023.

    Article  Google Scholar 

  5. Z. Zalevsky, Y. Beiderman, I. Margalit, S. Gingold, M. Teicher, V. Mico, J. Garcia, “Simultaneous remote extraction of multiple speech sources and heart beats from secondary speckles pattern,” Opt. Express 17, No. 24, 21566 (2009). DOI: 10.1364/OE.17.021566.

    Article  Google Scholar 

  6. N. Wadhwa, M. Rubinstein, F. Durand, W. T. Freeman, “Riesz pyramids for fast phase-based video magnification,” Proc. of IEEE Int. Conf. on Computational Photography, ICCP, 2–4 May 2014, Santa Clara, USA (IEEE, 2014). DOI: 10.1109/ICCPHOT.2014.6831820.

    Google Scholar 

  7. Abe Davis, Michael Rubinstein, Neal Wadhwa, Gautham J. Mysore, Fredo Durand, William T. Freeman, “The visual microphone: passive recovery of sound from video,” MIT, Microsoft Res., Adobe Res. URI: {rshttps://people.csail.mit.edu/mrub/papers/VisualMic_SIGGRAPH2014.pdfurl}.

  8. P. C. Loizou, “Speech enhancement based on perceptually motivated bayesian estimators of the magnitude spectrum,” IEEE Trans. Speech Audio Processing 13, No. 5, 857 (2005). DOI: 10.1109/TSA.2005.851929.

    Article  Google Scholar 

  9. S. Boll, “Suppression of acoustic noise in speech using spectral subtraction,” IEEE Trans. Acoustics, Speech, Signal Processing 27, No. 2, 113 (1979). DOI: 10.1109/TASSP.1979.1163209.

    Article  Google Scholar 

  10. J. Peeters, E. Louarroudi, D. De Greef, S. Vanlanduit, J. J. J. Dirckx, G. Steenackers, “Time calibration of thermal rolling shutter infrared cameras,” Infrared Physics & Technology 80, 145 (2017). DOI: 10.1016/j.infrared.2016.12.001.

    Article  Google Scholar 

  11. Yu. V. Lykov, A. D. Morozova, V. D. Kukush, “Influence of features of information leakage channels on intelligibility of eavesdropped voice messages,” Technol. Audit Production Reserves 1, No. 2, 4 (2017). DOI: 10.15587/2312-8372.2017.90571.

    Article  Google Scholar 

  12. Yu. V. Lykov, H. D. Morozova, “Researching the possibility of restoring audio information from a video without audio track,” Proc. of 21st Int. Forum of Young Scientists on Radio Electronics and Youth in the XXI Century, 25–27 Apr. 2017, Kharkiv, Ukraine (KNURE, Kharkiv, 2017), Vol. 3.

  13. M. A. Sapozhkov, Electroacoustics. Textbook for Universities [in Russian] (Svyaz’, Moscow, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuriy V. Lykov or Hanna D. Presniakova.

Additional information

Russian Text © The Author(s), 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 6, pp. 366–376.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019060050 with DOI: 10.20535/S0021347019060050.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lykov, Y.V., Presniakova, H.D. & Lykova, A.A. Research on Potentialities of Audio Information Recovery from Video Without Audio Track. Radioelectron.Commun.Syst. 62, 301–309 (2019). https://doi.org/10.3103/S0735272719060050

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719060050

Navigation