Skip to main content
Log in

Design and Analysis of Wide Tuning Range Ring VCO in 65nm CMOS Technology

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

In this article a ring voltage controlled oscillator (VCO) with four stages consisting of differential delay cells with two control voltages is proposed. This VCO uses the dual-delay loop technique for high operation frequency. Each delay cell of the proposed VCO includes two pairs of PMOS and NMOS cross-coupled load transistors to form a latch. The strength of the added latch and the operation frequency are adjusted with a pair cross-coupled NMOS pass transistors. Furthermore, to adjust the frequency of the proposed VCO in higher frequencies, the effect of the secondary path of this VCO is changed. The proposed VCO is simulated in 65nm TSMC CMOS technology in Cadence software and 1.2 V supply voltage. The wide tuning range of the proposed VCO varies from 4.25 to 21.31 GHz (80.07%), its power is 12.36 mW at 4.25 GHz frequency. The phase noise is −90.47 dBc/Hz at 1 MHz offset frequency and −117.4 dBc/Hz at 10 MHz offset frequency from 4.25 GHz while its area is 535.99 µm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. K. Mendhe, M. N. Thakare, G. D. Korde, “High frequency power optimized ring voltage controlled oscillator for 65nm CMOS technology-Review,” Int. J. Eng. Trends Tech. 8, No. 3, 127 (2014). DOI: 10.14445/22315381/IJETT-V8P223.

    Article  Google Scholar 

  2. A. Mandal, R. Mishra, M. R. Nagar, “Implementation of complex digital PLL for phase detection in software defined radar,” Radioelectron. Commun. Syst. 59, No. 4, 151 (2016). DOI: 10.3103/S0735272716040014.

    Article  Google Scholar 

  3. Z. Chen, M. Wang, J.-X. Chen, W.-F. Liang, P.-P. Yan, J.-F. Zhai, Wei Hong, “Linear CMOS LC-VCO based on triple-coupled inductors and its application to 40-GHz phase-locked loop,” IEEE Trans. Microwave Theory Tech. 65, No. 8, 2977 (2017). DOI: 10.1109/TMTT.2017.2663401.

    Article  Google Scholar 

  4. R. Islam, A. N. K. Suprotik, S. M. Zia Uddin, M. T. Amin, “Design and analysis of 3 stage ring oscillator based on MOS capacitance for wireless applications,” Proc. of Int. Conf. on Electrical, Computer and Communication Engineering, 16–18 Feb. 2017, Cox’s Bazar, Bangladesh (IEEE, 2017), pp. 723–727. DOI: 10.1109/ECACE.2017.7912998.

    Google Scholar 

  5. W.-T. Lee, J. Shim, J. Jeong, “Design of a three-stage ring-type voltage-controlled oscillator with a wide tuning range by controlling the current level in an embedded delay cell,” Microelectronics J. 44, No. 12, 1328 (2013). DOI: 10.1016/j.mejo.2013.09.003.

    Article  Google Scholar 

  6. J. Yin, P.-I. Mak, F. Maloberti, R. P. Martins, “A time-interleaved ring-VCO with reduced 1/f3 phase noise corner, extended tuning range and inherent divided output,” IEEE J. Solid-State Circuits 51, No. 12, 2979 (2016). DOI: 10.1109/JSSC.2016.2597847.

    Article  Google Scholar 

  7. X. Zhang, A. B. Apsel, “A low-power, process-and-temperature-compensated ring oscillator with addition-based current source,” IEEE Trans. Circuits Systems I: Regular Papers 58, No. 5, 868 (2011). DOI: 10.1109/TCSI.2010.2092110.

    Article  MathSciNet  Google Scholar 

  8. M. S. S. Kumar, M. Aarthy, “A 2.8 GHz low power high tuning voltage controlled ring oscillator,” Int. J. Eng. Advanced Tech. 3, No. 4, 2249 (2014).

    Google Scholar 

  9. S. Suman, K. G. Sharma, P. K. Ghosh, “Analysis and design of current starved ring VCO,” Proc. of Int. Conf. on Electrical, Electronics, and Optimization Techniques, 3–5 Mar. 2016, Chennai, India (IEEE, 2016), pp. 3222–3227. DOI: 10.1109/ICEEOT.2016.7755299.

    Google Scholar 

  10. A. Ramazani, S. Biabani, G. Hadidi, “CMOS ring oscillator with combined delay stages,” AEU - Int. J. Electronics Commun. 68, No. 6, 515 (2014). DOI: 10.1016/j.aeue.2013.12.008.

    Article  Google Scholar 

  11. J. Johnson, M. Ponnambalam, P. V. Chandramani, “Comparison of tunability and phase noise associated with injection locked three staged single and differential ended VCOs in 90nm CMOS,” Proc. of 2017 Fourth Int. Conf. on Signal Processing, Communication and Networking, 16–18 Mar. 2017, Chennai, India (IEEE, 2017), pp. 1–4. DOI: 10.1109/ICSCN.2017.8085700.

    Google Scholar 

  12. H. Ghonoodi, H. Miar-Naimi, M. Gholami, “Analysis of frequency and amplitude in CMOS differential ring oscillators,” Integration 52, 253 (2016). DOI: 10.1016/j.vlsi.2015.07.004.

    Article  Google Scholar 

  13. S. Salem, M. Tajabadi, M. Saneei, “The design and analysis of dual control voltages delay cell for low power and wide tuning range ring oscillators in 65nm CMOS technology for CDR applications,” AEU - Int. J. Electronics Commun. 82, 406 (2017). DOI: 10.1016/j.aeue.2017.10.012.

    Article  Google Scholar 

  14. A. Sharma, Saurabh, S. Biswas, “A low power CMOS voltage controlled oscillator in 65 nm technology,” Proc. of Int. Conf. on Computer Communication and Informatics, 3–5 Jan. 2014, Coimbatore, India (IEEE, 2014), pp. 1–5. DOI: 10.1109/ICCCI.2014.6921794.

    Google Scholar 

  15. G. Jovanovic, M. Stojcev, Z. Stamenkovic, “A CMOS voltage controlled ring oscillator with improved frequency stability,” Scientific Publications of the State University of Novi Pazar, Series A: Applied Mathematics, Informatics and mechanics, Vol. 2, p. 1–9 (2010).

    Google Scholar 

  16. T. Kackar, S. Suman, P. K. Ghosh, “Differential voltage controlled ring oscillators—A review,” Proc. of Int. Conf. on Communication and Networks 508, 571 (2017). DOI: 10.1007/978-981-10-2750-5 59.

    Article  Google Scholar 

  17. M.-L. Sheu, Y.-S. Tiao, L.-J. Taso, “A 1-V4-GHz wide tuning range voltage-controlled ring oscillator in 0.18 µm CMOS,” Microelectronics J. 42, No. 6, 897 (2011). DOI: 10.1016/j.mejo.2011.03.015.

    Article  Google Scholar 

  18. S.-y. Lee, S. Amakawa, N. Ishihara, K. Masu, “2.4–10 GHz low-noise injection-locked ring voltage controlled oscillator in 90 nm complementary metal oxide semiconductor,” Japanese J. Appl. Phys. 50, No. 4S, 04DE03 (2011). DOI: 10.1143/JJAP.50.04DE03.

    Article  Google Scholar 

  19. M. Parvizi, A. Khodabakhsh, A. Nabavi, “Low-power high-tuning range CMOS ring oscillator VCOs,” Proc. of IEEE Int. Conf. on Semiconductor Electronics, 25–27 Nov. 2008. Johor Bahru, Malaysia (IEEE, 2008), pp. 40–44. DOI: 10.1109/SMELEC.2008.4770273.

    Google Scholar 

  20. Y.-S. Tiao, M.-L. Sheu, “Full range voltage-controlled ring oscillator in 0.18µm CMOS for low-voltage operation,” Electron. Lett. 46, No. 1, 30 (2010). DOI: 10.1049/el.2010.2542.

    Article  Google Scholar 

  21. S. Min, T. Copani, S. Kiaei, B. Bakkaloglu, “A 90-nm CMOS 5-GHz ring-oscillator PLL with delay-discriminator-based active phase-noise cancellation,” IEEE J. Solid-State Circuits 48, No. 5, 1151 (2013). DOI: 10.1109/JSSC.2013.2252515.

    Article  Google Scholar 

  22. K.-H. Cheng, S.-C. Kuo, C.-M. Tu, “A low noise, 2.0 GHz CMOS VCO design,” Proc. of IEEE 46th Midwest Symp. on Circuits and Systems, 27–30 Dec. 2003, Cairo, Egypt (IEEE, 2003), pp. 205–208. DOI: 10.1109/MWSCAS.2003.1562254.

    Google Scholar 

  23. V. Thakur, V. Verma, “Low power consumption differential ring oscillator,” Int. J. Electronics Commun. Eng. 6, No. 1, 81 (2013). URI: http://www.irphouse.com/ijece/ijecev6n109.pdf

    Google Scholar 

  24. G. Haijun, S. Lingling, K. Xiaofei, L. Liheng, “A low-phase-noise ring oscillator with coarse and fine tuning in a standard CMOS process,” J. Semiconductors 33, No. 7, 075004 (2012). DOI: 10.1088/1674-4926/33/7/075004.

    Article  Google Scholar 

  25. A. C. Demartinos, A. Tsimpos, S. Vlassis, S. Sgourenas, G. Souliotis, “A 3GHz VCO suitable for MIPIM-PHY serial interface,” Proc. of 10th Int. Conf. on Design & Technology of Integrated Systems in Nanoscale Era, 21–23 Apr. 2015, Naples, Italy (IEEE, 2015), pp. 1–6. DOI: 10.1109/DTIS.2015.7127353.

    Google Scholar 

  26. J.-M. Kim, S. Kim, I.-Y. Lee, S.-K. Han, S.-G. Lee, “A low-noise four-stage voltage-controlled ring oscillator in deep-submicrometer CMOS technology,” IEEE Trans. Circuits Systems II: Express Briefs 60, No. 2, 71 (2013). DOI: 10.1109/TCSII.2012.2235734.

    Article  Google Scholar 

  27. J. Jalil, M. B. I. Reaz, M. A. M. Ali, “CMOS differential ring oscillators: Review of the performance of CMOS ROs in communication systems,” IEEE Microwave Mag. 14, No. 5, 97 (2013). DOI: 10.1109/MMM.2013.2259401.

    Article  Google Scholar 

  28. S. Yoo, J. J. Kim, J. Choi, “A 2–8 GHz wideband dually frequency-tuned ring-VCO with a scalable KVCO,” IEEE Microwave Wireless Components Lett. 23, No. 11, 602 (2013). DOI: 10.1109/LMWC.2013.2280641.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shirin Askari, Mohsen Saneei or Sanaz Salem.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional Information

The initial version of this paper in Russian is published in the journal “Izvestiya Vysshikh Uchebnykh Zavedenii. Radioelektronika,” ISSN 2307-6011 (Online), ISSN 0021-3470 (Print) on the link http://radio.kpi.ua/article/view/S0021347019050054 with DOI: https://doi.org/10.20535/S0021347019050054.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Askari, S., Saneei, M. & Salem, S. Design and Analysis of Wide Tuning Range Ring VCO in 65nm CMOS Technology. Radioelectron.Commun.Syst. 62, 232–240 (2019). https://doi.org/10.3103/S0735272719050054

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719050054

Navigation