Skip to main content
Log in

EHF Band Linear Antenna Array Based on Surface Wave Transformation

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The experience of using of experimental samples of diffraction radiation antennas shows the need to expand the list of options and modifications of the technical solutions for such antennas. One of variants is the modification of a linear dielectric waveguide for rigidly fixation of the dielectric rod. H-shaped surface-wave waveguides in the form of combination of dielectric rod and rigid metal elements have been proposed for a basic element of diffraction radiation antennas designed for operation in conditions of increased mechanical loads and vibrations at frequencies above 80 GHz. The results of experimental studies of the near-field distribution, radiation patterns, gain and energy losses of the antenna are presented. The obtained results show the effectiveness of the implemented constructive approach. The configuration of the linear antenna grating of diffraction radiation with a modified dielectric waveguide is proposed, which can be applied for the development of scanning antennas in the 80–100 GHz frequency range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Voskresenskii (ed.), Microwave Antennas and Devices [in Russian] (Radio i Svyaz’, Moscow, 1981).

    Google Scholar 

  2. S. D. Andrenko, Yu. B. Sidorenko, V. P. Shestopalov, “On the issue of the surface wave-to-spatial mode transformation,” DAN USSR, No. 12, 156 (1976).

  3. S. D. Andrenko, N. D. Devyatkov, V. P. Shestopalov, “Millimeter band arrays,” DAN SSSR 240, No. 6, 1340 (1978).

    Google Scholar 

  4. S. Sautbekov, K. Sirenko, Yu. Sirenko, A. Yevdokymov, “Diffraction radiation effects: a theoretical and experimental study,” IEEE Antennas Propag. Mag. 57, No. 5, 73 (2015). DOI: https://doi.org/10.1109/MAP.2015.2470673.

    Article  Google Scholar 

  5. O. P. Kusaykin, P. N. Melezhik, A. E. Poyedinchuk, S. A. Provalov, D. G. Seleznyov, “Surface and leaky waves of a planar dielectric waveguide with a diffraction grating,” IET Microwaves, Antennas & Propag. 10, No. 1, 61 (2016). DOI: https://doi.org/10.1049/iet-map.2015.0158.

    Article  Google Scholar 

  6. A. A. Kirilenko, S. O. Steshenko, “The accurate two-dimensional model of the effect of the surface waves transformation into the spatial modes,” Telecom. Radio Eng. 65, No. 16–20, 1765 (2006). DOI: https://doi.org/10.1615/TelecomRadEng.v65.i19.30.

    Article  Google Scholar 

  7. A. V. Ostankov, S. A. Antipov, K. A. Razinkin, “Optimization of directional and energetic properties of diffraction antenna,” Global J. Pure Appl. Math. 12, No. 4, 3845 (2016). URI: https://www.ripublication.com/gjpam16/gipamv12n4_86.pdf.

    Google Scholar 

  8. P. N. Melezhik, V. B. Razskazovskiy, N. G. Reznichenko, V. A. Zuykov, S. D. Andrenko, Yu. V. Sidorenko, S. A. Provalov, A. V. Varavin, L. S. Usov, V. M. Chmil, Yu. N. Mus’kin, “Semiconductor coherent Ka-band radar for airport surface traffic monitoring,” Nauka Innov. 4, No. 3, 5 (2008). DOI: https://doi.org/10.15407/scin4.03.005.

    Article  Google Scholar 

  9. P. N. Melezhik, Yu. B. Sidorenko, S. A. Provalov, S. D. Andrenko, S. A. Shilo, “Planar antenna with diffraction radiation for radar complex of millimeter band,” Radioelectron. Commun. Syst. 53, No. 5, 233 (2010). DOI: https://doi.org/10.3103/S073527271005002X.

    Article  Google Scholar 

  10. A. V. Hnatovskyi, S. A. Provalov, “Properties of combined gratings in diffraction radiation antennas,” Telecom. Radio Eng. 74, No. 3, 189 (2015). DOI: https://doi.org/10.1615/TelecomRadEng.v74.i3.10.

    Article  Google Scholar 

  11. A. A. Vertiy, Yu. K. Sirenko, A. Pavlyuchenko, A. Poyedinchuk, A. Sabyrov, S. S. Sautbekov, N. P. Yashina, “Surface-to-spatial mode conversion by a convex cylindrical diffraction grating: an experimental study,” Telecom. Radio Eng. 75, No. 4, 297 (2016). DOI: https://doi.org/10.1615/TelecomRadEng.v75.i4.20.

    Article  Google Scholar 

  12. N. Burambayeva, V. Naumenko, S. S. Sautbekov, Yu. K. Sirenko, A. A. Vertiy, “Modeling and analysis of a fast-scanning diffraction radiation antenna,” Telecom. Radio Eng. 75, No. 3, 189 (2016). DOI: https://doi.org/10.1615/TelecomRadEng.v75.i3.10.

    Article  Google Scholar 

  13. M. Cohn, “Propagation in a dielectric-loaded parallel plane waveguide,” IRE Trans. Microwave Theory Tech. 7, No. 2, 202 (1959). DOI: https://doi.org/10.1109/TMTT.1959.1124682.

    Article  Google Scholar 

  14. A. Sanchez, A. A. Oliner, “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide — Part I: Accurate theory,” IEEE Trans. Microwave Theory Tech. 35, No. 8, 737 (1987). DOI: https://doi.org/10.1109/TMTT.1987.1133740.

    Article  Google Scholar 

  15. H. Qing, A. A. Oliner, A. Sanchez, “A new leaky waveguide for millimeter waves using nonradiative dielectric (NRD) waveguide — Part II: Comparison with experiments,” IEEE Trans. Microwave Theory Tech. 35, No. 8, 748 (1987). DOI: https://doi.org/10.1109/TMTT.1987.1133741.

    Article  Google Scholar 

  16. J. Attari, H. Boutayeb, K. Wu, “A simplified implementation of substrate integrated non-radiative dielectric waveguide at millimeter-wave frequencies,” PIER C 55, 83 (2014). DOI: https://doi.org/10.2528/PIERC14051905.

    Article  Google Scholar 

  17. L. Latrach, N. Rihem, H. Hanen, A. Gharsallah, “Parametric and comparative studies of leaky wave image NRDG antenna designed with the ordinary single-layer and the double-layers rectangular image NRD guide,” Int. J. Commun. Antenna Propag. 6, No. 2, 108 (2016). DOI: https://doi.org/10.15866/irecap.v6i2.8325.

    Google Scholar 

  18. E. M. Guttsait, “Mode types in the H-shaped metal-dielectric waveguide,” Radiotekh. Elektron., No. 2, 310 (1962).

  19. V. P. Shestopalov, L. N. Litvinenko, S. A. Masalov, V. G. Sologub, Wave Diffraction on Grating Arrays [in Russian] (Izdat. Kharkiv University, Kharkov, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. V. Hnatovskyi, S. A. Provalov or G. I. Khlopov.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hnatovskyi, A.V., Provalov, S.A. & Khlopov, G.I. EHF Band Linear Antenna Array Based on Surface Wave Transformation. Radioelectron.Commun.Syst. 62, 127–133 (2019). https://doi.org/10.3103/S073527271903004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527271903004X

Navigation