Skip to main content
Log in

Parametric Spectral Analysis of Noisy Signals with Unimodal Spectrum

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The article proposes a method for the coefficients reconstruction of a discrete autocorrelation function of random signals with a unimodal power spectral density to construct their parametric models. The method is based on finding the optimal values of the relative width ΔFT and the weighting factor α ∈ [0; 1] of the spectral mode, which characterizes the share of the Gaussian and resonant components in the spectrum envelope. The proposed method makes it possible to reduce by 1.5–4 times the discrepancy between the control and estimated spectra in comparison with the known approaches to parametric spectral analysis. An increase in the adequacy of spectral estimation makes it possible to reduce the length Mof the analyzed time sample by a factor of 2.3–4 times, while maintaining the accuracy of the spectral analysis achieved by other known parametric methods. Winnings are achieved by using a priori information about the spectral properties of the analyzed process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Lawrence Marple, Jr. Digital Spectral Analysis with Applications (Prentice–Hall, Englewood Cliffs, N.J., 1987).

    Google Scholar 

  2. V. G. Andrejev, “Optimization of autoregressive models of interfering radio–reflections,” Radioelectron. Commun. Syst. 51, No. 7, 377 (2008). DOI: https://doi.org/10.3103/S0735272708070042.

    Article  Google Scholar 

  3. D. M. Piza, T. I. Bugrova, V. N. Lavrentiev, D. S. Semenov, “Method of forming classified training sample in case of spacial signal processing under influence of combined interference,” Radioelectron. Commun. Syst. 61, No. 7, 325 (2018). DOI: https://doi.org/10.3103/S0735272718070051.

    Article  Google Scholar 

  4. V. G. Andrejev, N. L. Tran, V. A. Belokurov, “Parametric spectral analysis for noisy signals with Gaussian spectrum,” Vestnik of Ryazan State Radio Engineering University, No. 55, 16 (2016). DOI: https://doi.org/10.21667/1995-4565-2016-55-1-16-21.

    Article  Google Scholar 

  5. S. M. Kay, S. L. Marple Jr., “Spectrum analysis–A modern perspective,” Proc. IEEE 69, No. 11, 1380 (1981). DOI: https://doi.org/10.1109/PROC.1981.12184.

    Article  Google Scholar 

  6. V. G. Andreyev, T. P. Nguyen, “Cardiosignals processing with clutter and noise as background,” Vestnik of Ryazan State Radio Engineering University, No. 48, 60 (2014). URI: https://elibrary.ru/item.asp?id=21724317.

    Google Scholar 

  7. D. I. Lekhovytskiy, “Adaptive lattice filters for systems of space–time processing of non–stationary Gaussian processes,” Radioelectron. Commun. Syst. 61, No. 11, 477 (2018). DOI: https://doi.org/10.3103/S0735272718110018.

    Article  Google Scholar 

  8. V. A. Dvinskikh, K. A. Razumikhin, “Spectral analysis of digital quasiperiodic signals,” Radioelectron. Commun. Syst. 48, No. 8, 14 (2005). URI: http://radioelektronika.org/article/view/S0735272705080030.

    Google Scholar 

  9. K. V. Bisina, Maleeha Abdul Azeez, “Optimized estimation of power spectral density,” Proc. of Int. Conf. on Intelligent Computing and Control Systems, ICICCS, 15–16 Jun. 2017, Madurai, India (IEEE, 2017). DOI: https://doi.org/10.1109/ICCONS.2017.8250588.

    Google Scholar 

  10. V. M. Pukhova, T. V. Kustov, G. Ferrini, “Time–frequency analysis of non–stationary signals,” Proc. of IEEE Conf. of Russian Young Researchers in Electrical and Electronic Engineering, EIConRus, 29 Jan.–1 Feb. 2018, Moscow, Russia (IEEE, 2018). DOI: https://doi.org/10.1109/EIConRus.2018.8317292.

    Google Scholar 

  11. P. A. Bakulev, V. I. Koshelev, V. G. Andrejev, “Optimizing of ARMA using echo modeling,” Radioelectron. Commun. Syst. 37, No. 9, 38 (1994).

    Google Scholar 

  12. V. G. Andreyev, N. L. Tran, “Synthesis of modified overdetermined autoregression model of random process in short sample,” Vestnik of Ryazan State Radio Engineering University, No. 54, 45 (2015). URI: https://elibrary.ru/item.asp?id=25588818.

    Google Scholar 

  13. H. Akaike, “Power spectrum estimation through autoregressive model fitting,” Ann. Inst. Stat. Math. 21, 407 (1969). DOI: https://doi.org/10.1007/BF02532269.

    Article  MathSciNet  MATH  Google Scholar 

  14. V. I. Koshelev, ARMA Models of Random Processes. Applied Problems of Synthesis and Optimization [in Russian] (Radio i Svyaz’, Moscow, 2002).

    Google Scholar 

  15. V. G. Andrejev, “Optimization of autoregressive models of radio reflections,” Vestnik of Ryazan State Radio Engineering University, No. 35, 12 (2011). URI: https://elibrary.ru/item.asp?id=15617928.

    Google Scholar 

  16. V. G. Andrejev, Sh. V. Nguyen, “Parametrical modeling of the correlated radio–reflections for the echo–signals processing efficiency analysis,” Vestnik of Ryazan State Radio Engineering University, No. 18, 40 (2006). URI: https://elibrary.ru/item.asp?id=11743408.

    Google Scholar 

  17. V. I. Koshelev, V. G. Andrejev, “Synthesis of ARMA–models of echo signals,” Radioelectron. Commun. Syst. 36, No. 7, 8 (1993).

    Google Scholar 

  18. Peter B. Tuuk, S. Lawrence Marple, “Compressed sensing radar amid noise and clutter using interference covariance information,” IEEE Trans. Aerospace Electronic Syst. 50, No. 2, 887 (Apr 2014). DOI: https://doi.org/10.1109/TAES.2014.120523.

    Google Scholar 

  19. V. G. Andrejev, Sh. V. Nguen, “Optimization of filters for simulation of interfering radio reflections in the investigation of systems of echo–signal primary processing,” Radioelectron. Commun. Syst. 49, No. 10, 47 (2006). URI: http://radioelektronika.org/article/view/S0735272706100074.

    Google Scholar 

  20. V. G. Andrejev, T. P. Nguyen, “Adaptive processing of signals on a background of clutter and noise,” Radioelectron. Commun. Syst. 58, No. 2, 85 (2015). DOI: https://doi.org/10.3103/S0735272715020053.

    Article  Google Scholar 

  21. A. G. Gorelik, S. F. Kolomiets, P. V. Kupriyanov, “Scattered spectrum shape as a new information source about scattering medium characteristics and dynamic processes involved,” Civil Aviation High Technologies. Radiophisics and Electronics Series, No. 176, 18 (2012).

    Google Scholar 

  22. S. F. Kolomiets, “Interpretation of the Z–R ratio in rains at finite periods of measurement time, taking into account the Mie scattering conditions,” Achievements of Modern Radioelectronics, No. 12, 51 (2007). URI: http://www.radiotec.ru/article/2154.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Andrejev.

Additional information

Russian Text © V.G. Andrejev, N.L. Tran, T.P. Nguyen, 2019, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2019, Vol. 62, No. 1, pp. 45–53.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrejev, V.G., Tran, N.L. & Nguyen, T.P. Parametric Spectral Analysis of Noisy Signals with Unimodal Spectrum. Radioelectron.Commun.Syst. 62, 34–41 (2019). https://doi.org/10.3103/S0735272719010059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272719010059

Navigation