Skip to main content
Log in

Optical CDMA Coded STBC Based on Chaotic Technique in FSO Communication Systems

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Free-Space Optical (FSO) can provide high-speed communications when the effect of turbulence is not serious. However, Space-Time-Block-Code (STBC) is a good candidate to mitigate this seriousness. This paper proposes a hybrid of an Optical Code Division Multiple Access (OCDMA) and STBC in FSO communication for last mile solutions, where access to remote areas is complicated. The main weakness effecting a FSO link is the atmospheric turbulence. The feasibility of employing STBC in OCDMA is to mitigate these effects. The current work evaluates the Bit-Error-Rate (BER) performance of OCDMA operating under the scintillation effect, where this effect can be described by the gamma-gamma model. The most obvious finding to emerge from the analysis is that the BER can be enhanced by orders of magnitude for different numbers of users and different values of scintillation effects using a MIMO channel as compared to Single-Input-Single-Output (SISO) one. The theoretical analysis of the derived BER, which is based on gamma-gamma model, is validated through the Monte Carlo simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Liu, P. T. Dat, K. Wakamori, M. Matsumoto, “A new scheme on time-diversity atmospheric OCDMA system over atmospheric turbulence channels,” Proc. of IEEE Globecom Workshop, 6–10 Dec. 2010, Miami, FL, USA (IEEE, 2010), pp. 1020–1025. DOI: 10.1109/GLOCOMW.2010.5700088.

    Chapter  Google Scholar 

  2. N. Boudriga, W. Abdallah, M. Hamdi, “Physical layer cryptography in optical networks: A lattice–based approach,” Proc. of 12th Int. Conf. on Transparent Optical Networks, 27 Jun.–1 Jul. 2010, Munich, Germany (IEEE, 2010), pp. 1–7. DOI: 10.1109/ICTON.2010.5549040.

    Google Scholar 

  3. A. Litvinenko, A. Lboltins, “Selection and performance analysis of chaotic spreading sequences for DS–CDMA systems,” Proc. of Advances in Wireless and Optical Communications, RTUWO, 3–4 Nov. 2016, Riga, Latvia (IEEE, 2016), pp. 38–45. DOI: 10.1109/RTUWO.2016.7821852.

    Google Scholar 

  4. L. Yang, G. Shou, Z. Qian, Y. Hu, T. Miki, “OCDMA–WDM–PON with two–level chaotic logistic–map as spread spectrum sequence,” Proc. of Joint Conf. on OECC/ACOFT, 7–10 Jul. 2008, Sydney, Australia (IEEE, 2008). DOI: 10.1109/OECCACOFT.2008.4610530.

    Google Scholar 

  5. S. Donati, C. R. Rirasso, “Introduction to the feature section on optical chaos and applications to cryptography,” IEEE J. Quantum Electronics 38, No. 9, 1138 (2002). DOI: 10.1109/JQE.2002.801951.

    Article  Google Scholar 

  6. M. P. Ninos, H. E. Nistazakis, G. S. Tombras, “On the BER performance of FSO links with multiple receivers and spatial jitter over gamma–gamma or exponential turbulence channels,” Optik 138, 269 (2017). DOI: 10.1016/j.ijleo.2017.03.009.

    Article  Google Scholar 

  7. J. Ma, K. Li, L. Tan, S. Yu, Y. Cao, “Exact error rate analysis of free–space optical communications with spatial diversity over Gamma–Gamma atmospheric turbulence,” J. Modern Optics 63, No. 3, 252 (2016). DOI: 10.1080/09500340.2015.1075618.

    Article  Google Scholar 

  8. E. Bayaki, R. Schober, R. K. Mallik, “Performance analysis of MIMO free–space optical systems in gamma–gamma fading,” IEEE Trans. Commun. 57, No. 11, 3415 (2009). DOI: 10.1109/TCOMM.2009.11. 080168.

    Article  Google Scholar 

  9. A. Garcia–Zambrana, “Error rate performance for STBC in free–space optical communications through strong atmospheric turbulence,” IEEE Commun. Lett. 11, No. 5, 390 (2007). DOI: 10.1109/LCOMM.2007.061980.

    Article  Google Scholar 

  10. K. Anbarasi, C. Hemanth, R. G. Sangeetha, “A review on channel models in free space optical communication systems,” Optics Laser Technol. 97, 161 (2017). DOI: 10.1016/j.optlastec.2017.06.018.

    Article  Google Scholar 

  11. J. Park, E. Lee, G. Yoon, “Average bit–error rate of the Alamouti scheme in gamma–gamma fading channels,” IEEE Photonic Technol. Lett. 23, No. 4, 269 (2011). DOI: 10.1109/LPT.2010.2100815.

    Article  Google Scholar 

  12. S. M. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE J. Selected Areas Commun. 16, No. 8, 1451 (1988). DOI: 10.1109/49.730453.

    Article  Google Scholar 

  13. T. Huang, L. Wang, W. Xu, G. Chen, “A multi–carrier M–ary differential chaos shift keying system with low PAPR,” IEEE Access 5, 18793 (2017). DOI: 10.1109/ACCESS.2017.2752238.

    Article  Google Scholar 

  14. A. J. Lawrance, G. Ohama, “Exact calculation of bit error rates in communication systems with chaotic modulation,” IEEE Trans. Circuits Systems I: Fundamental Theory Appl. 50, No. 11, 1391 (2003). DOI: 10.1109/TCSI.2003.818612.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Kaddoum, A. J. Lawrance, P. Charge, D. Roviras, “Chaos communication performance: Theory and computation,” Circuit Syst. Signal Processing 30, No. 1, 185 (2011). DOI: 10.1007/s00034–010–9217–1.

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Yi, M. Yao, X. Wang, “MIMO FSO communication using subcarrier intensity modulation over double generalized gamma fading,” Optics Commun. 382, 64 (2017). DOI: 10.1016/j.optcom.2016.07.064.

    Article  Google Scholar 

  17. X.–L. Liu, D. En, L.–G. Wang, “An optical CDMA system based on chaotic sequences,” Optoelectronics Lett. 10, No. 2, 126 (2014). DOI: 10.1007/s11801–014–3191–y.

    Article  Google Scholar 

  18. X. Chen, D. Chen, Z. Wang, “Performance improvement of bandwidth–limited coherent OCDMA system,” Photon. Netw. Commun. 16, No. 2, 149 (2008). DOI: 10.1007/s11107–008–0126–1.

    Article  Google Scholar 

  19. X. Liu, C. Yu, X. Xin, Q. Zhang, “Generator of optical chaotic sequences,” Electronics Lett. 43, No. 21, 1159 (2007). DOI: 10.1049/el:20071812.

    Article  Google Scholar 

  20. E. Bayaki, R. Schober, R. K. Mallik, “Performance analysis of free–space optical systems in gamma–gamma fading,” Proc. of IEEE Global Telecommunication Conf., 30 Nov.–4 Dec. 2008, New Orlean, USA (IEEE, 2008), pp. 1–6. DOI: 10.1109/GLOCOM.2008.ECP.548.

    Google Scholar 

  21. J. Feng, X. Zhao, “Performance analysis of OOK–based FSO systems in Gamma–Gamma turbulence with imprecise channel models,” Optics Commun. 402, 340 (2017). DOI: 10.1016/j.optcom.2017.06.016.

    Article  Google Scholar 

  22. A. J. Lawrance, J. Yao, “Likelihood–based demodulation in multi–user chaos shift keying communication,” Circuits Syst. Signal Process. 27, No. 6, 847 (2007). DOI: 10.1007/s00034–008–9063–6.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. Shinozuka, A. Uchida, T. Ogawa, S. Yoshimori, F. Kannari, “Chaotic on–off keying method in microchip lasers for secure communications,” Proc. of Conf. on Lasers and Electro–Optics, 15–19 Jul. 2001, Chiba, Japan (IEEE, 2001), Vol. 2, pp. II–390–II–391, DOI: 10.1109/CLEOPR.2001.970998.

    Google Scholar 

  24. L. F. Abdulameer, U. Sripati, M. Kulkarni, “CSK based STBC–CDMA system: design and performance evaluation,” Association of Arab Universities Journal of Engineering Sciences 24, No. 1, 13 (2017). URI: https://www.jaaru.org/index.php/auisseng/article/view/21.

    Google Scholar 

  25. G. Kaddoum, D. Roviras, P. Charge, D. Fournier–Prunaret, “Robust synchronization for asynchronous multi–user chaos–based DS–CDMA,” Signal Process. 89, No. 5, 807 (2009). DOI: 10.1016/j.sigpro.2008.10.023.

    Article  MATH  Google Scholar 

  26. M. Premaratne, F.-C. Zheng, “Orthogonal space-time block codes for free-space IM/DD optical links,” Electronics Lett. 43, No. 15, 822 (2007). DOI: 10.1049/el:20073712.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lwaa Faisal Abdulameer.

Additional information

Original Russian Text © L.F. Abdulameer, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 10, pp. 577–591.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdulameer, L.F. Optical CDMA Coded STBC Based on Chaotic Technique in FSO Communication Systems. Radioelectron.Commun.Syst. 61, 454–466 (2018). https://doi.org/10.3103/S0735272718100035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718100035

Navigation