Skip to main content
Log in

Circuit Theory Analysis of Aperture Coupled Patch Antenna for Wireless Communication

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

An analysis of dual band aperture coupled microstrip patch antenna is performed using modal expansion cavity model. The theoretical investigation of antenna characteristics such as return loss, VSWR and radiation pattern is represented. The influence of geometric parameters of the aperture coupled microstrip patch antenna, such as aperture length and width, height of the substrate, dielectric constant are also investigated. It is found that antenna resonates at two distinct modes i.e. 4.39 and 5.55 GHz for lower and upper resonance frequencies respectively. The bandwidth of the aperture coupled microstrip patch antenna at lower resonance frequency is 10.23% (theoretical) and 13.33% (simulated) whereas at upper resonance frequency, it is 5.69% (theoretical) and 3.59% (simulated). The frequency ratio obtained for upper to lower resonance frequencies for theoretical and simulated results are 1.5 and 1.37 respectively. The theoretical results are compared with IE3D simulation results along with reported experimental results and they are in close agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Hrebenciuc, N. Stroia, D. Moga, Z. Barabas, “A low cost approach to large smart shelf setups,” Advances in Electrical and Computer Engineering 11, No. 4, 117 (2011). DOI: 10.4316/AECE.2011.04019.

    Article  Google Scholar 

  2. K. D’hoe, A. Van Nieuwenhuyse, G. Ottoy, L. De Strycker, L. De Backer, J.-P. Goemaere, B. Nauwelaers, “Influence of different types of metal plates on a high frequency RFID loop antenna: study and design.” Advances in Electrical and Computer Engineering 9, No. 2, 3 (2009). DOI: 10.4316/AECE.2009.02001.

    Article  Google Scholar 

  3. D. M. Pozar, “Microstrip antenna aperture-coupled to a microstripline,” Electron. Lett. 21, No. 2, 49 (1985). DOI: 10.1049/el:19850034.

    Article  Google Scholar 

  4. P. Sullivan, D. Schaubert, “Analysis of an aperture coupled microstrip antenna,” IEEE Trans. Antennas Propag. 34, No. 8, 977 (Aug. 1986). DOI: 10.1109/TAP.1986.1143929.

    Article  Google Scholar 

  5. M. Himdi, J. P. Daniel, C. Terret, “Analysis of aperture-coupled microstrip antenna using cavity method,” Electron. Lett. 25, No. 6, 391 (Mar. 1989). DOI: 10.1049/el:19890269.

    Google Scholar 

  6. F. Croq, A. Papiernik, “Large bandwidth aperture-coupled microstrip antenna,” Electron. Lett. 26, No. 16, 1293 (Aug. 1990). DOI: 10.1049/el:19900832.

    Article  Google Scholar 

  7. J. S. Meiguni, M. Kamyab, A. Hosseinbeig, “Theory and experiment of spherical aperture-coupled antennas,” IEEE Trans. Antennas Propag. 61, No. 5, 2397 (2013). DOI: 10.1109/TAP.2013.2244836.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Ittipiboon, R. Oostlander, Yahia M. M. Antar, Michel Cuhaci, “A modal expansion method of analysis and measurement on aperture-coupled microstrip antenna,” IEEE Trans. Antennas Propag. 39, No. 11, 1567 (Nov. 1991). DOI: 10.1109/8.102770.

    Google Scholar 

  9. A. K. Bhattacharyya, Y. M. M. Antar, A. Ittipiboon, “Full wave analysis of an aperture-coupled patch antenna,” Electron. Lett. 27, No. 2, 153 (Jan. 1991). DOI: 10.1049/el:19910099.

    Google Scholar 

  10. M. Himdi, O. Lafond, S. Laignier, J. P. Daniel, “Extension of cavity method to analyse aperture coupled microstrip patch antenna with thick ground plane,” Electron. Lett. 34, No. 16, 1534 (Aug 1998). DOI: 10.1049/el:19981128.

    Google Scholar 

  11. O. Lafond, M. Himdi, J. P. Daniel, “Extension of cavity method to analyze the aperture-coupled microstrip patch antenna with a tilted feeding line,” Microwave Opt. Technol. Lett. 22, No. 6, 395 (Sept 1999). DOI: 10.1002/(SICI)1098-2760(19990920)22:6::AID-MOP83.0.CO;2-Q.

    Google Scholar 

  12. Zhang-Fa Liu, Pang-Shyan Kooi, Le-Wei Li, Mook-Seng Leong, Tat-Soon Yeo, “A method for designing broad-band microstrip antennas in multilayered planar structures,” IEEE Trans. Antennas Propag. 47, No. 9, 1416 (Sept 1999). DOI: 10.1109/8.793321.

    Google Scholar 

  13. Marcel Kossel, Hansruedi Benedickter, Werner Bachtold, Roland Kung, Jan Hansen, “Circularly polarized, aperture-coupled patch antennas for a 2.4 GHz RFID system,” Microwave J. (Nov 1999). URI: http://www.microwavejournal.com/articles/2784.

    Google Scholar 

  14. J. P. Kim, “Optimum design of an aperture-coupled microstrip patch antenna,” Microwave Opt. Technol. Lett. 39, No. 1, 75 (Oct 2003). DOI: 10.1002/mop.11132.

    Google Scholar 

  15. S. Chakraborty, B. Gupta, D. R. Poddar, “Development of closed form design formulae for aperture coupled microstrip patch antenna,” J. Sci. Industrial Res. 64, No. 7, 482 (July 2005). URI: http://nopr.niscair.res.in/handle/123456789/5129.

    Google Scholar 

  16. A. Kumar, M. V. Kartikeyan, “A circularly polarized stacked patch aperture coupled microstrip antenna for 2.6 GHz band,” Int. J. Infrared Millimeter Waves 28, No. 1, 13 (2007). DOI: 10.1007/s10762-006-9174-8.

    Article  Google Scholar 

  17. M. Elhefnawy, W. Ismail, “Analysis of aperture coupled microstrip antenna with circular polarization diversity,” Wireless Pers. Commun. 56, No. 2, 301 (Jan 2011). DOI: 10.1007/s11277-009-9833-x.

    Article  Google Scholar 

  18. C. Hua, X. Wu, W. Wu, “A cavity-backed aperture-coupled microstrip patch antenna array with sum/difference beams,” J. Electromagn. Waves Appl. 26, No. 7, 932 (2012). DOI: 10.1080/09205071.2012.710381.

    Article  Google Scholar 

  19. Georgi S. Kirov, Georgi T. Chervenkov, Chavdar D. Kalchev, “Aperture coupled microstrip short backfire antenna,” J. Electrical Eng. 63, No. 2, 75 (2012). DOI: 10.2478/v10187-012-0011-0.

    Article  Google Scholar 

  20. A. Singh, S. Singh, “Miniaturized wideband aperture coupled microstrip patch antenna by using inverted U-slot,” Int. J. Antennas Propag. 2014, Article ID 306942 (2014). DOI: 10.1155/2014/306942.

    Google Scholar 

  21. J. S. Meiguni, M. Kamyab, A. Hosseinbeig, “Theory and experiment of spherical aperture-coupled antennas,” IEEE Trans. Antennas Propag. 61, No. 5, 2397 (May 2013). DOI: 10.1109/TAP.2013.2244836.

    Google Scholar 

  22. J. Wang, R. Fralich, C. Wu, J. Litva, “Multifunctional aperture coupled stack patch antenna,” Electron. Lett. 26, No. 25, 2067 (Dec 1990). DOI: 10.1049/el:19901333.

    Article  Google Scholar 

  23. K. C. Gupta, Microstrip Lines and Slotlines, 2nd ed. (Artech House, Norwood MA, 1996).

    Google Scholar 

  24. R. Garg, P. Bhartia, I. Bahl, A. Ittipiboon, Microstrip Antenna Design Handbook (Artech House, Boston, London, 2001).

    Google Scholar 

  25. T. C. Edwards, Foundations for Microstrip Circuit Design (John Wiley, 1981).

    Google Scholar 

  26. C. A. Balanis, Antenna Theory: Analysis and Design, 3nd ed. (Wiley, New York, 2005).

    Google Scholar 

  27. F. E. Terman, Electronic and Radio Engineering (McGraw-Hill, 1955).

    Google Scholar 

  28. Zhang-Fa Liu, Pang-Shyan Kooi, Le-Wei Li, Mook-Seng Leong, Tat-Soon Yeo, “A method for designing broad-band microstrip antennas in multilayered planar structures,” IEEE Trans. Antennas Propag. 47, No. 9, 1416 (1999). DOI: 10.1109/8.793321.

    Article  Google Scholar 

  29. IE3D Simulation Software version 14.05 (Zeland Software, Inc., CA, 2008).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Singh.

Additional information

Original Russian Text © A. Singh, M. Aneesh, K. Kamakshi, J.A. Ansari, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 4, pp. 226–238.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A., Aneesh, M., Kamakshi, K. et al. Circuit Theory Analysis of Aperture Coupled Patch Antenna for Wireless Communication. Radioelectron.Commun.Syst. 61, 168–179 (2018). https://doi.org/10.3103/S0735272718040040

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718040040

Navigation