Advertisement

Radioelectronics and Communications Systems

, Volume 61, Issue 2, pp 72–79 | Cite as

Complex Effective Dielectric Permittivity of Micromechanically Tunable Microstrip Lines

  • E. A. Tsyba
  • I. P. Golubeva
  • Victor Kazmirenko
  • Yu. V. Prokopenko
Article

Abstract

It is considered an influence of physical-topological parameters of controlled microstrip lines where characteristics modification is achieved by signal electrode movement over the substrate on effective dielectric permittivity and electromagnetic energy loss in the line expressed in form of complex permittivity. There are stated the ways of increase of sensitivity of effective dielectric permittivity modification to signal electrode shift and loss decrease. There are determined ultimate characteristics of tuning and loss. There are represented calculations of transfer factor effective permittivity corresponding to experimental results. These results can be used for development of controlled resonant elements and phase shifters with application of electrically tunable micromovement devices, such as piezo- and electrostrictive actuators or microelectromechanic systems. Due to application of invariant relations of physical-topological parameters represented calculations are suitable for estimation of tuning factors and loss of devices with micromechanical control in a wide range of operating frequency with application of wide range of materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kurudere, V. B. Erturk, “Novel microstrip fed mechanically tunable combline cavity filter,” IEEE Microwave and Wireless Components Lett. 23, No. 11, 578 (Nov. 2013). DOI: 10.1109/LMWC.2013.2281432.CrossRefGoogle Scholar
  2. 2.
    S. Fouladi, F. Huang, W. D. Yan, R. R. Mansour, “High-Q narrowband tunable combline bandpass filters using MEMS capacitor banks and piezomotors,” IEEE Trans. Microwave Theory Tech. 61, No. 1, 393 (Jan. 2013). DOI: 10.1109/TMTT.2012.2226601.CrossRefGoogle Scholar
  3. 3.
    Brendan T. W. Gillatt, Mario D’Auria, William J. Otter, N. M. Ridler, S. Lucyszyn, “3-D printed variable phase shifter,” IEEE Microwave and Wireless Components Lett. 26, No. 10, 822 (2016). DOI: 10.1109/LMWC.2016.2604879.CrossRefGoogle Scholar
  4. 4.
    P. Romano, O. Araromi, S. Rosset, J. Perruisseau-Carrier, H. Shea, J. R. Mosig, Juan Ramon, “Low-loss millimeter-wave phase shifters based on mechanical reconfiguration,” Proc. of Progress In Electromagnetics Research Symp., PIERS, 6-9 Jul. 2015, Prague (Prague, 2015). URI: https://infoscience.epfl.ch/record/210386.Google Scholar
  5. 5.
    D. Bouyge, D. Mardivirin, J. Bonache, Aurelian Crunteanu, Arnaud Pothier, Miguel Duran-Sindreu, Pierre Blondy, Ferran Martin, “Split ring resonators (SRRs) based on micro-electro-mechanical deflectable cantilever-type rings: application to tunable stopband filters,” IEEE Microwave and Wireless Components Lett. 21, No. 5, 243 (2011). DOI: 10.1109/LMWC.2011.2124450.CrossRefGoogle Scholar
  6. 6.
    Y. Poplavko, Y. Prokopenko, V. Pashkov, V. Molchanov, I. Golubeva, V. Kazmirenko, D. Smigin, “Low loss microwave piezo-tunable devices,” Proc. of 36th European Microwave Conf., 10-15 Sept. 2006, Manchester,UK (IEEE, 2006), pp. 657-660. DOI: 10.1109/EUMC.2006.281496.Google Scholar
  7. 7.
    Jia Ni, Jiasheng Hong, “Varactor-tuned microstrip bandpass filters with different passband characteristics,” IET Microwaves, Antennas & Propag. 8, No. 6, 415 (2014). DOI: 10.1049/iet-map.2013.0474.CrossRefGoogle Scholar
  8. 8.
    M. F. Karim, Y.-X. Guo, Z. N. Chen, L. C. Ong, “Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes,” IEEE MTT-S Int. Microwave Symp. Dig., 7-12 Jun. 2009, Boston, MA, USA (IEEE, 2009), pp. 509-512. DOI: 10.1109/MWSYM.2009.5165745.Google Scholar
  9. 9.
    Zhang Jin, S. Ortiz, A. Mortazawi, “Design and performance of a new digital phase shifter at X-band,” IEEE Microwave Wireless Components Lett. 14, No. 9, 428 (Sept. 2004). DOI: 10.1109/LMWC.2004.832049.CrossRefGoogle Scholar
  10. 10.
    T.-Y. Yun, K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, No. 1, 105 (2002). DOI: 10.1109/22.981254.CrossRefGoogle Scholar
  11. 11.
    I. Golubeva, V. Kazmirenko, P. Sergienko, Y. Prokopenko, “Effective permittivity in tunable microstrip and coplanar lines,” Proc. of XXXII Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 10-12 Apr 2012, Kyiv, Ukraine (Kyiv, 2012), pp. 69–70. URI: http://www.journals.kpi.ua/publications/text/69_70_2012.pdf.Google Scholar
  12. 12.
    Yu. V. Prokopenko, “Controllability range of dielectric inhomogeneity located between the metal planes,” Tehnologiya i Konstruirovanie v Elektronnoi Apparature, No. 6, 16 (2012). URI: http://www.tkea.com.ua/english/tkea/2012/6_2012/st_04.htm.Google Scholar
  13. 13.
    K. C. Gupta, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).Google Scholar
  14. 14.
    P. Yu. Sergienko, V. A. Kazmirenko, A. S. Chernov, Yu. V. Prokopenko, “Q-factor of tuned microstrip resonator,” Radioelectron. Commun. Syst. 59, No. 2, 89 (2016). DOI: 10.3103/S0735272716020060.CrossRefGoogle Scholar
  15. 15.
    P. Sergienko, I. Golubeva, Y. Prokopenko, “Loss in tunable microstrip lines,” Proc. of IEEE 34th Int. Conf. on Electronics and Nanotechnology, ELNANO, 15-18 Apr. 2014, Kyiv, Ukraine (IEEE, 2014), pp. 97–100. DOI: 10.1109/ELNANO.2014.6873972.Google Scholar
  16. 16.
    A. I. Akhiezer, I. A. Akhiezer, Electromagnetism and Electromagnetic Waves [in Russian] (Vyssh. Shkola, Moscow, 1985).zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”KyivUkraine

Personalised recommendations