Skip to main content
Log in

Complex Effective Dielectric Permittivity of Micromechanically Tunable Microstrip Lines

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

It is considered an influence of physical-topological parameters of controlled microstrip lines where characteristics modification is achieved by signal electrode movement over the substrate on effective dielectric permittivity and electromagnetic energy loss in the line expressed in form of complex permittivity. There are stated the ways of increase of sensitivity of effective dielectric permittivity modification to signal electrode shift and loss decrease. There are determined ultimate characteristics of tuning and loss. There are represented calculations of transfer factor effective permittivity corresponding to experimental results. These results can be used for development of controlled resonant elements and phase shifters with application of electrically tunable micromovement devices, such as piezo- and electrostrictive actuators or microelectromechanic systems. Due to application of invariant relations of physical-topological parameters represented calculations are suitable for estimation of tuning factors and loss of devices with micromechanical control in a wide range of operating frequency with application of wide range of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kurudere, V. B. Erturk, “Novel microstrip fed mechanically tunable combline cavity filter,” IEEE Microwave and Wireless Components Lett. 23, No. 11, 578 (Nov. 2013). DOI: 10.1109/LMWC.2013.2281432.

    Article  Google Scholar 

  2. S. Fouladi, F. Huang, W. D. Yan, R. R. Mansour, “High-Q narrowband tunable combline bandpass filters using MEMS capacitor banks and piezomotors,” IEEE Trans. Microwave Theory Tech. 61, No. 1, 393 (Jan. 2013). DOI: 10.1109/TMTT.2012.2226601.

    Article  Google Scholar 

  3. Brendan T. W. Gillatt, Mario D’Auria, William J. Otter, N. M. Ridler, S. Lucyszyn, “3-D printed variable phase shifter,” IEEE Microwave and Wireless Components Lett. 26, No. 10, 822 (2016). DOI: 10.1109/LMWC.2016.2604879.

    Article  Google Scholar 

  4. P. Romano, O. Araromi, S. Rosset, J. Perruisseau-Carrier, H. Shea, J. R. Mosig, Juan Ramon, “Low-loss millimeter-wave phase shifters based on mechanical reconfiguration,” Proc. of Progress In Electromagnetics Research Symp., PIERS, 6-9 Jul. 2015, Prague (Prague, 2015). URI: https://infoscience.epfl.ch/record/210386.

    Google Scholar 

  5. D. Bouyge, D. Mardivirin, J. Bonache, Aurelian Crunteanu, Arnaud Pothier, Miguel Duran-Sindreu, Pierre Blondy, Ferran Martin, “Split ring resonators (SRRs) based on micro-electro-mechanical deflectable cantilever-type rings: application to tunable stopband filters,” IEEE Microwave and Wireless Components Lett. 21, No. 5, 243 (2011). DOI: 10.1109/LMWC.2011.2124450.

    Article  Google Scholar 

  6. Y. Poplavko, Y. Prokopenko, V. Pashkov, V. Molchanov, I. Golubeva, V. Kazmirenko, D. Smigin, “Low loss microwave piezo-tunable devices,” Proc. of 36th European Microwave Conf., 10-15 Sept. 2006, Manchester,UK (IEEE, 2006), pp. 657-660. DOI: 10.1109/EUMC.2006.281496.

    Google Scholar 

  7. Jia Ni, Jiasheng Hong, “Varactor-tuned microstrip bandpass filters with different passband characteristics,” IET Microwaves, Antennas & Propag. 8, No. 6, 415 (2014). DOI: 10.1049/iet-map.2013.0474.

    Article  Google Scholar 

  8. M. F. Karim, Y.-X. Guo, Z. N. Chen, L. C. Ong, “Miniaturized reconfigurable and switchable filter from UWB to 2.4 GHz WLAN using PIN diodes,” IEEE MTT-S Int. Microwave Symp. Dig., 7-12 Jun. 2009, Boston, MA, USA (IEEE, 2009), pp. 509-512. DOI: 10.1109/MWSYM.2009.5165745.

    Google Scholar 

  9. Zhang Jin, S. Ortiz, A. Mortazawi, “Design and performance of a new digital phase shifter at X-band,” IEEE Microwave Wireless Components Lett. 14, No. 9, 428 (Sept. 2004). DOI: 10.1109/LMWC.2004.832049.

    Article  Google Scholar 

  10. T.-Y. Yun, K. Chang, “Analysis and optimization of a phase shifter controlled by a piezoelectric transducer,” IEEE Trans. Microwave Theory Tech. 50, No. 1, 105 (2002). DOI: 10.1109/22.981254.

    Article  Google Scholar 

  11. I. Golubeva, V. Kazmirenko, P. Sergienko, Y. Prokopenko, “Effective permittivity in tunable microstrip and coplanar lines,” Proc. of XXXII Int. Sci. Conf. on Electronics and Nanotechnology, ELNANO, 10-12 Apr 2012, Kyiv, Ukraine (Kyiv, 2012), pp. 69–70. URI: http://www.journals.kpi.ua/publications/text/69_70_2012.pdf.

    Google Scholar 

  12. Yu. V. Prokopenko, “Controllability range of dielectric inhomogeneity located between the metal planes,” Tehnologiya i Konstruirovanie v Elektronnoi Apparature, No. 6, 16 (2012). URI: http://www.tkea.com.ua/english/tkea/2012/6_2012/st_04.htm.

    Google Scholar 

  13. K. C. Gupta, Microstrip Lines and Slotlines, 2nd ed. (Artech House, 1996).

    Google Scholar 

  14. P. Yu. Sergienko, V. A. Kazmirenko, A. S. Chernov, Yu. V. Prokopenko, “Q-factor of tuned microstrip resonator,” Radioelectron. Commun. Syst. 59, No. 2, 89 (2016). DOI: 10.3103/S0735272716020060.

    Article  Google Scholar 

  15. P. Sergienko, I. Golubeva, Y. Prokopenko, “Loss in tunable microstrip lines,” Proc. of IEEE 34th Int. Conf. on Electronics and Nanotechnology, ELNANO, 15-18 Apr. 2014, Kyiv, Ukraine (IEEE, 2014), pp. 97–100. DOI: 10.1109/ELNANO.2014.6873972.

    Google Scholar 

  16. A. I. Akhiezer, I. A. Akhiezer, Electromagnetism and Electromagnetic Waves [in Russian] (Vyssh. Shkola, Moscow, 1985).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Golubeva.

Additional information

Original Russian Text © E.A. Tsyba, I.P. Golubeva, V. Kazmirenko, Yu.V. Prokopenko, 2018, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2018, Vol. 61, No. 2, pp. 96–107.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsyba, E.A., Golubeva, I.P., Kazmirenko, V. et al. Complex Effective Dielectric Permittivity of Micromechanically Tunable Microstrip Lines. Radioelectron.Commun.Syst. 61, 72–79 (2018). https://doi.org/10.3103/S0735272718020048

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272718020048

Navigation