Radioelectronics and Communications Systems

, Volume 60, Issue 9, pp 413–422 | Cite as

Design of a negative conductance dielectric resonator oscillator for X-band applications

  • Seyi Stephen Olokede
  • Syasana Basyirah Binti Mohammed Zaki
  • Nor Muzlifah Mahyuddin
  • Mohd Fadzil Ain
  • Zainal Arifin Ahmad


An X-band tunable microwave low-phase noise planar oscillator employing a novel-fed dielectric resonator (DR) with a single transistor has been investigated and realized. A ZrSnTi oxide composite ceramic-based DR with dielectric permittivity of 95 enclosed in a metallic cavity with an unloaded Q factor of 5,000 at 10 GHz is proposed. The resonant frequency affinity with respect to geometric parameters is established by using the compensation technique based on dual negative conductance feedback, the outputs of which are combined via a Wilkinson power divider (WPD). The feedback parallel-coupled DR oscillator is incorporated into a laminate microwave board using the photolithographic technique. The oscillator includes a pseudomorphic low noise amplifier based on a high-electron-mobility transistor. Hence, the proposed oscillator with mechanic tuning is measured, and the results show that DR resonates at TE 01δ mode with frequency of 10 GHz. The measured phase noise of the oscillator is –81.03 dBc/Hz at a 100 kHz offset.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Razavi, “Challenges in portable RF transceiver design,” IEEE Circuits Devices Mag. 12, No. 5, 12 (Sept. 1996). DOI: 10.1109/101.537352.CrossRefGoogle Scholar
  2. 2.
    GED 2013. Dielectric Resonator Oscillator (DRO Information). General Electronic Devices. URI: Scholar
  3. 3.
    J. Wan, “Design of a 5.305 GHz dielectric resonator oscillator with simulation and optimization,” J. Electronic Science Technol. China 6, No. 3, 342 (2008). URI: Scholar
  4. 4.
    Guoguang Yan, “The design of the Ku band dielectric resonator oscillator,” Proc. of Int. Conf. on Electronic Packaging Technology & High Density Packaging, ICEPT-HDP, 28-31 Jul. 2008, Shanghai, China (IEEE, 2008), pp. 1–3. DOI: 10.1109/ICEPT.2008.4607000.Google Scholar
  5. 5.
    B. Sun, Y. Wu, B. Luo, G. Du, “Design of 5.8 GHz dielectric resonator oscillator applied in electronic toll collection,” Proc. of 5 Int. Conf. on Wireless Communications, Networking and Mobile Computing, WiCom, 24-26 Sept. 2009, Beijing, China (IEEE, 2009), pp. 1–3. DOI: 10.1109/WICOM.2009.5303409.Google Scholar
  6. 6.
    T. Tanaka, M. Aikawa, “A K-band push-push oscillator using dielectric resonator,” Proc. of 13 Int. Symp. on Antenna Technology and Applied Electromagnetics and the Canadian Radio Science Meeting, ANTEM/URSI, 15-18 Feb. 2009, Toronto, ON, Canada (IEEE, 2009), pp. 1–4. DOI: 10.1109/ANTEMURSI.2009.4805120.Google Scholar
  7. 7.
    Y. Du, Z.-X. Tang, B. Zhang, P. Su, “K-band harmonic dielectric resonator oscillator using parallel feedback structure,” PIER Lett. 34, 83 (2012). DOI: 10.2528/PIERL12061108.CrossRefGoogle Scholar
  8. 8.
    Han-Li Liu, Lang Wang, Guo-Wei Lin, “Design of a K-band push-push dielectric resonator oscillator,” Proc. of Int. Workshop on Electromagnetics; Applications and Student Innovation, iWEM, 6-9 Aug. 2012, Chengdu, Sichuan, China (IEEE, 2012), pp. 1–2. DOI: 10.1109/iWEM.2012.6320369.Google Scholar
  9. 9.
    Q. Xia, Z. Tang, B. Zhang, “Design of a 17.4GHz push-push dielectric resonator oscillator,” Proc. of Int. Conf. on Microwave and Millimeter Wave Technology, ICMMT, 8-11 May 2010, Chengdu, China (IEEE, 2010), pp. 532–535. DOI: 10.1109/ICMMT.2010.5525221.Google Scholar
  10. 10.
    P. Su, Z.-X. Tang, and B. Zhang, “Push-push dielectric resonator oscillator using substrate integrated waveguide power combiner,” PIER Lett. 30, 105 (2012). DOI: 10.2528/PIERL11122302.CrossRefGoogle Scholar
  11. 11.
    V. F. Fusco and A. Dearn, Dielectric Resonator Oscillators. Wiley Encyclopedia of Electrical and Electronics Engineering (1999).CrossRefGoogle Scholar
  12. 12.
    F. X. Sinnesbichler, B. Hautz, G. R. Olbrich, “A Si/SiGe HBT dielectric resonator push-push oscillator at 58 GHz,” IEEE Microwave Guided Wave Lett. 10, No. 4, 145 (Apr. 2000). DOI: 10.1109/75.846927.CrossRefGoogle Scholar
  13. 13.
    O. Ishihara, T. Mori, H. Sawano, M. Nakatani, “A highly stabilized GaAs FET oscillator using a dielectric resonator feedback circuit in 9-14 GHz,” IEEE Trans. Microwave Theory Tech. 28, No. 8, 817 (Aug 1980). DOI: 10.1109/TMTT.1980.1130177.CrossRefGoogle Scholar
  14. 14.
    H. Abe, Y. Takayama, A. Higashisaka, H. Takamizawa, “A highly stabilized low-noise GaAs FET integrated oscillator with a dielectric resonator in the C band,” IEEE Trans. Microwave Theory Tech. 26, No. 3, 156 (Mar 1978). DOI: 10.1109/TMTT.1978.1129336.CrossRefGoogle Scholar
  15. 15.
    K. Ogawa, H. Ikeda, T. Ishizaki, K. Hashimoto, Y. Ota, “25 GHz dielectric resonator oscillator using an AlGaAs/GaAs HBT,” Electron. Lett. 26, No. 18, 1514 (30 Aug. 1990). DOI: 10.1049/el:19900972.CrossRefGoogle Scholar
  16. 16.
    O. Llopis, J.-M. Dienot, J. Verdier, R. Plana, M. Gayral, J. Graffeuil, “Analytic investigation of frequency sensitivity in microwave oscillators: Application to the computation of phase noise in a dielectric resonator oscillator,” Annales Des Télécommunications 51, No. 3–4, 121 (1996). DOI: 10.1007/BF02995502.Google Scholar
  17. 17.
    P. R. Herczfeld, A. Daryoosh, C. D’Ascenzo, M. Contarino, A. Rosen, “Optically tuned and FM modulated X-band dielectric resonator oscillator,” Proc. of 14th European Microwave Conf., 10-13 Sept. 1984, Liege, Belgium (IEEE, 1984), pp. 268–273. DOI: 10.1109/EUMA.1984.333407.Google Scholar
  18. 18.
    T. Makino, A. Hashima, “A highly stabilized MIC Gunn oscillator using a dielectric resonator,” IEEE Trans. Microwave Theory Tech. 27, No. 7, 633 (Jul. 1979). DOI: 10.1109/TMTT.1979.1129692.CrossRefGoogle Scholar
  19. 19.
    M. A. Mizan, D. Sturzebecher, T. Higgins, A. Paolella, “An X-band, high power dielectric resonator oscillator for future military systems,” IEEE Trans. Ultrasonics, Ferroelectrics, Frequency Control 40, No. 5, 483 (Sept. 1993). DOI: 10.1109/58.238099.CrossRefGoogle Scholar
  20. 20.
    A. A. Kishk, A. W. Glisson, G. P. Junker, “Bandwidth enhancement for split cylindrical dielectric resonator antennas,” PIER 33, 97 (2001). DOI: 10.2528/PIER00122803.CrossRefGoogle Scholar
  21. 21.
    A. Petosa, Dielectric Resonator Antenna Handbook (Artech House, 2007).Google Scholar
  22. 22.
    T. Shen, K. A. Zaki, C. Wang, “Tunable dielectric resonators with dielectric tuning disks,” IEEE Trans. Microwave Theory Tech. 48, No. 12, 2439 (Dec. 2000). DOI: 10.1109/22.898995.CrossRefGoogle Scholar
  23. 23.
    T. Shen, K. A. Zaki, C. Wang, J. Deriso, “Tunable dielectric resonators with dielectric tuning disks in cylindrical enclosures,” Proc. of IEEE MTT-S Int. Microwave Symp. Dig., 11-16 June 2000, Boston, MA, USA (IEEE, 2000), vol. 3, pp. 1441–1444. DOI: 10.1109/MWSYM.2000.862245.Google Scholar
  24. 24.
    G. D. Vendelin, A. M. Pavio, U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques (Wiley, New York, 1990).Google Scholar
  25. 25.
    G. D. Vendelin, A. M. Pavio, U. L. Rohde. Microwave Circuit Design Using Linear and Nonlinear Techniques, 2nd ed. (John Wiley & Sons, Inc., Hoboken, New Jersey, 2005). DOI: 10.1002/0471715832.CrossRefGoogle Scholar
  26. 26.
    I. J. Bahl and P. Bhartia, Microwave Solid State Circuit Design (Wiley, New York, 1988).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • Seyi Stephen Olokede
    • 1
  • Syasana Basyirah Binti Mohammed Zaki
    • 1
  • Nor Muzlifah Mahyuddin
    • 1
  • Mohd Fadzil Ain
    • 1
  • Zainal Arifin Ahmad
    • 1
  1. 1.Universiti Sains MalaysiaNibong TebalMalaysia

Personalised recommendations