Radioelectronics and Communications Systems

, Volume 60, Issue 9, pp 393–400 | Cite as

Polarized X-band Doppler radar scatterometer for investigation of microwave scattering of the wavy water surface in laboratory conditions

  • V. I. Abramov
  • E. M. Zuikova
  • D. A. Sergeev
  • Yu. I. Troitskaya
  • A. V. Ermoshkin
  • V. I. Kazakov
Article
  • 17 Downloads

Abstract

The paper describes an experimental model of continuous wave X-band Doppler radar scatterometer (sine frequency modulation) designed for physics investigation of radio waves scattering from sea surface in controlled conditions. The prototype is developed and fabricated at the IAP RAS. Its main feature is adaptation to the conditions of a laboratory modeling in the wind-wave flumes to investigate the dependence of the normalized radar cross-section (NRCS) on the wind speed. The design of the microwave and antenna systems allows measurement of scattered radiation power and its Doppler spectrum both at linear co- and cross-polarizations (in a sequential switching mode). This is important from the viewpoint of studying the waves at high wind speeds. The detailed description of the design and its specifications are presented. Also the problems of calibration and results of experimental operation on the high-speed wind-wave flume of IAP RAS are discussed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. Yu. Yurovsky, I. A. Sergievskaya, S. A. Ermakov, B. Chapron, I. A. Kapustin, O. V. Shomina, “Influence of wind wave breakings on a millimeter-wave radar backscattering by the sea surface,” Phys. Oceanography, No. 4, 37 (2015). DOI: 10.22449/1573-160X-2015-4-34-45.Google Scholar
  2. 2.
    G. P. Kulemin, V. B. Razskazovskii, The Small-Angle Scattering of Millimeter Waves by the Earth’s Surface [in Russian] (Naukova Dumka, Kyiv, 1987).Google Scholar
  3. 3.
    A. S. Zapevalov, “Bragg scattering of centimeter electromagnetic radiation from the sea surface: The effect of waves longer than Bragg components,” Izv. Atmos. Ocean. Phys. 45, No. 2, 253 (2009). DOI: 10.1134/S0001433809020108.CrossRefMATHGoogle Scholar
  4. 4.
    V. Yu. Karaev, E. M. Meshkov, X. Chu, “Features of sea-wave classification in problems of remote sensing,” Izv. Atmos. Ocean. Phys. 49, No. 9, 919 (2013). DOI: 10.1134/S0001433813090181.CrossRefGoogle Scholar
  5. 5.
    V. F. Kravchenko, V. I. Lutsenko, I. V. Lutsenko, Scattering of Radio Waves by Sea and Detection of Objects on the Its Background [in Russian] (Fizmatlit, Moscow, 2015). ISBN 978-5-9221-1613-8.Google Scholar
  6. 6.
    S. Lehner, J. Horstmann, W. Koch, W. Rosenthal, “Mesoscale wind measurements using recalibrated ERS SAR images,” J. Geophys. Res. 103, No. C4, 7847 (1998). DOI: 10.1029/97JC02726.CrossRefGoogle Scholar
  7. 7.
    J. Horstmann, H. Schiller, J. Schulz-Stellenfleth, S. Lehner, “Global wind speed retrieval from SAR,” IEEE Trans. Geosci. Remote Sens. 41, No. 10, 2277 (2003). DOI: 10.1109/TGRS.2003.814658.CrossRefGoogle Scholar
  8. 8.
    F. M. Monaldo, D. R. Thompson, R. C. Beal, W. G. Pichel, P. Clemente-Colon, “Comparison of SAR-derived wind speed with model predictions and ocean buoy measurements,” IEEE Trans. Geosci. Remote Sens. 39, No. 12, 2587 (2001). DOI: 10.1109/36.974994.CrossRefGoogle Scholar
  9. 9.
    P. A. Hwang, B. Zhang, W. Perrie, “Depolarized radar return for breaking wave measurement and hurricane wind retrieval,” Geophys. Res. Lett. 37, No. 1, L01604 (2010). DOI: 10.1029/2009GL041780.CrossRefGoogle Scholar
  10. 10.
    H. Hersbach, “Comparison of C-band scatterometer CMOD5.N equivalent neural winds with ECMWF,” J. Atmos. Oceanic Technol. 27, 721 (2010). DOI: 10.1175/2009JTECHO698.1.CrossRefGoogle Scholar
  11. 11.
    H. Hersbach, A. Stoffelen, S. de Haan, “An improved C-band scatterometer ocean geophysical model function: CMOD5,” J. Geophys. Res. 112, No. C3, C03006 (2007). DOI: 10.1029/2006JC003743.CrossRefGoogle Scholar
  12. 12.
    P. A. Hwang, B. Zhang, J. V. Toporkov, W. Perrie, “Comparison of composite Bragg theory and quad-polarization radar backscatter from RADARSAT-2: With applications to wave breaking and high wind retrieval,” J. Geophys. Res. 115, No. C8, C08019 (2010). DOI: 10.1029/2009JC005995.CrossRefGoogle Scholar
  13. 13.
    B. Zhang, W. Perrie, Y. He, “Wind speed retrieval from RADARSAT-2 quad-polarization images using a new polarization ratio model,” J. Geophys. Res. 116, No. C8, C08008 (2011). DOI: 10.1029/2010JC006522.Google Scholar
  14. 14.
    P. W. Vachon, J. Wolfe, “C-band cross-polarization wind speed retrieval,” IEEE Geosci. Remote Sens. Lett. 8, No. 3, 456 (2011). DOI: 10.1109/LGRS.2010.2085417.CrossRefGoogle Scholar
  15. 15.
    B. Zhang, W. Perrie, “Cross-polarized synthetic aperture radar: A new potential measurement technique for hurricanes,” Bull. Amer. Meteor. Soc. 93, 531 (2012). DOI: 10.1175/BAMS-D-11-00001.1.CrossRefGoogle Scholar
  16. 16.
    S. Komarov, A. Komarov, V. Zabeline, “Marine wind speed retrieval from RADARSAT-2 dual-polarization imagery,” Can. J. Remote Sensing 37, No. 5, 520 (2011). DOI: 10.5589/m11-063.CrossRefGoogle Scholar
  17. 17.
    G. J. van Zadelhoff, A. Stoffelen, P. W. Vachon, J. Wolfe, J. Horstmann, M. Belmonte Rivas, “Scatterometer hurricane wind speed retrievals using cross polarization,” Atmos. Meas. Tech. Discuss. 7, No. 2, 7945 (2013). DOI: 10.5194/amtd-6-7945-2013.CrossRefGoogle Scholar
  18. 18.
    J. Uher, J. Bornemann, U. Rosenberg, Waveguide Components for Antenna Feed Systems: Theory and CAD (Artech House, Michigan University, 1993).Google Scholar
  19. 19.
    A. W. Rudge, K. Milne, A. D. Oliver, P. Knight, The Handbook of Antenna Design (Short Run Press LTD, London, 1982).CrossRefGoogle Scholar
  20. 20.
    A. S. Vinitsky, Autonomous Radio Systems: Manual for Higher Education Institutions [in Russian] (Radio i Svyaz’, Moscow, 1986).Google Scholar
  21. 21.
    M. I. Skolnik, Radar Handbook, Vol. 3: Radars Systems, 3rd ed. (McGraw-Hill Education, 2008).Google Scholar
  22. 22.
    Y. I. Troitskaya, D. A. Sergeev, A. A. Kandaurov, G. A. Baidakov, M. A. Vdovin, V. I. Kazakov, “Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions,” J. Geophys. Res. 117, No. C11, C00J21 (2012). DOI: 10.1029/2011JC007778.CrossRefGoogle Scholar
  23. 23.
    G. R. Valenzuela, “Theories for the interaction of electromagnetic and oceanic waves — A review,” Boundary-Layer Meteorology 13, No. 1–4, 61 (1978). DOI: 10.1007/BF00913863.CrossRefGoogle Scholar
  24. 24.
    Yu. Troitskaya, V. Abramov, A. Ermoshkin, E. Zuikova, V. Kazakov, D. Sergeev, A. Kandaurov, O. Ermakova, “Laboratory study of cross-polarized radar return under gale-force wind conditions,” Int. J. Remote Sens. 37, No. 9, 1981 (2016). DOI: 10.1080/01431161.2016.1160301.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • V. I. Abramov
    • 1
  • E. M. Zuikova
    • 2
  • D. A. Sergeev
    • 2
  • Yu. I. Troitskaya
    • 2
  • A. V. Ermoshkin
    • 2
  • V. I. Kazakov
    • 2
  1. 1.Radiophysical Research InstituteNizhny NovgorodRussian Federation
  2. 2.Institute of Applied PhysicsNizhny NovgorodRussian Federation

Personalised recommendations