Skip to main content
Log in

Simulation of energetic efficiency of triode high voltage glow discharge electron sources with account of temperature of electrons and its mobility in anode plasma

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The article proposes an iterative technique of calculation of energetic efficiency of triode high voltage glow discharge electron sources’, based on taking into account the influence of heating of anode plasma by the accelerated electrons of electron beam and by the slow secondary discharge electrons, reflected from the anode. The increase of temperature of anode plasma influences its’ volume, as well as the concentration and mobility of ions’ in it. Therefore, the proposed model allows obtaining the corrected values of discharge current and energetic efficiency of electron sources by taking into account the thermodynamic parameters of anode plasma. In addition, one of the advantages of proposed iterative calculation technique is that the model is closed and self-consistent, therefore, it does not demand use of approximated data about the thermodynamic parameters of discharge plasma from references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Ladokhin, N. I. Levitsky, V. B. Chernyavsky, et al., Electron Beam Melting in Foundry [in Russian] (Stal, Kiev, 2007).

    Google Scholar 

  2. M. A. Zavyalov, Yu. E. Kreindel, A. A. Novikov, L. P. Shanturin, Plasma Processes in Technological Electron Guns [in Russian] (Energoizdat, Moscow, 1989).

    Google Scholar 

  3. M. I. Grechanyuk, A. G. Melnyk, I. M. Grechanyuk, V. G. Melnyk, D. V. Kovalchuk, “Modern electron beam technologies and equipment for melting and physical vapor deposition of different materials,” Elektrotechnica and Electronica 49, No. 5-6, 115 (2014). URL: http://epluse.fnts.bg/EplusE/EplusE-abstracts-20 14-05-06.pdf.

    Google Scholar 

  4. G. Mattausch, B. Zimmermann, F. Fietzke, J. P. Heinss, B. Graffel, F. Winkler, F. H. Roegner, C. Metzner, “Gas discharge electron sources—proven and novel tools for thin-film technologies,” Elektrotechnica and Electronica 49, No. 5-6, 183 (2014). URL: http://epluse.fnts.bg/EplusE/EplusE-abstracts-201 4-05-06.pdf.

    Google Scholar 

  5. P. Feinaeugle, G. Mattausch, S. Schmidt, F.-H. Roegner, “A new generation of plasma-based electron beam sources with high power density as a novel tool for high-rate PVD,” Proc. of 54-th Annual Tech. Conf. on Society of Vacuum Coaters (Chicago, 2011), pp. 202–209.

    Google Scholar 

  6. D. Yarmolich, P. Nozar, S. Gleizer, Y. E. Krasik, G. Mittica, C. Ancora, A. Brilliante, I. Bilotti, C. Taliani, “Characterization of deposited films and the electron beam generated in the pulsed plasma deposition gun,” Japan. J. Applied Physics 50, No. 8S1 (2011). DOI: 10.1143/JJAP.50.08JD03.

  7. G. Mattausch, B. Scheffel, O. Zywitzki, C. Metzner, F. H. Roegner, “Technologies and tools for the plasma-activated EB high-rate deposition of Zirconia,” Elektrotechnica and Electronica 47, No. 5-6, 152 (2012). URL: http://epluse.fnts.bg/EplusE/EplusE-abstracts-2012-05-06.pdf.

    Google Scholar 

  8. S. V. Denbnovetsky, V. I. Melnyk, I. V. Melnyk, B. A. Tugay, “Model of control of glow discharge electron gun current for microelectronics production applications,” Proc. SPIE 5065, 64 (2003). DOI: 10.1117/ 12.502174.

    Article  Google Scholar 

  9. Z. Schiller, U. Gaizig, Z. Panzer, Electron-Beam Technology [in Russian] (Energiya, Moscow, 1980).

    Google Scholar 

  10. N. N. Rykalin, I. V. Zuev, A. A. Uglov, Fundamentals of Electron-Beam Processing of Materials (Mashinostroyeniye, Moscow, 1978).

    Google Scholar 

  11. N. Grechanyuk, P. Kucherenko, I. Grechanyuk, P. Shpack, “Modern technologies and equipment for obtaining of new materials and coatings,” Elektrotechnica and Electronica 41, No. 5-6, 122 (2006).

    Google Scholar 

  12. S. V. Denbnovetsky, V. I. Melnik, I. V. Melnik, B. A. Tugay, “Investigation of forming of electron beam in glow discharge electron guns with additional electrode,” Proc. of XVIII Int. Symp. on Discharges and Electrical Insulation in Vacuum, 17–21 Aug. 1998, Eindhoven, The Netherlands (IEEE, 1998), Vol. 2, pp. 637–640. DOI: 10.1109/DEIV.1998.738827.

    Google Scholar 

  13. I. V. Melnyk, “Investigation of the dependence of energetic efficiency of triode high voltage glow discharge electron sources on its parameters and geometric dimensions of electrode system,” Elektronnoe Modelirovanie 35, No. 5, 71 (2013). URL: http://www.emodel.org.ua/index.php/en/30-archive/2013-ãîä/35-5/ 536-35-5-6-e.html.

    Google Scholar 

  14. I. V. Melnyk, “Estimating of current rise time of glow discharge in triode electrode system in case of control pulsing,” Radioelectron. Commun. Syst. 56, No. 12, 592 (2013). DOI: 10.3103/S0735272713120066.

    Article  Google Scholar 

  15. V. L. Granovskii, Electric Current in Gases. Vol. 1: General Problems of Electrodynamics of Gases [in Russian] (GITTL, Moscow, 1952).

    Google Scholar 

  16. Yu. P. Raizer, Gas Discharge Physics (Springer Berlin Heidelberg, Berlin, 2011).

    Google Scholar 

  17. E. P. Velikhov, B. S. Kovalev, A. T. Rakhimov, Physical Phenomena in a Gas-Discharge Plasma [in Russian] (Nauka, Moscow, 1987).

    Google Scholar 

  18. O. A. Sinkevich, I. P. Stakhanov, Plasma Physics. Stationary Processes in Partly Ionized Gas [in Russian] (Vyssh. Shkola, Moscow, 1991).

    Google Scholar 

  19. V. P. Ilyin, Numerical Methods for Solving Problems in Electrophysics [in Russian] (Nauka, Moscow, 1985).

    Google Scholar 

  20. F. P. Vasiliev, Numerical Methods for Solving Extremal Problems [in Russian] (Nauka-GRFML, Moscow, 1988).

    Google Scholar 

  21. A. A. Novikov, High Voltage Glow Discharge Electron Sources with Anode Plasma [in Russian] (Energoatomizdat, Moscow, 1983).

    Google Scholar 

  22. I. V. Melnyk and S. B. Tugay, “Analytical calculations of anode plasma position in high-voltage discharge range in case of auxiliary discharge firing,”Radioelectron. Commun. Syst. 55, No. 11, 514 (2012). DOI: 10.3103/ S0735272712110064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Melnyk.

Additional information

Original Russian Text © I.V. Melnyk, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 7, pp. 413–424.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melnyk, I.V. Simulation of energetic efficiency of triode high voltage glow discharge electron sources with account of temperature of electrons and its mobility in anode plasma. Radioelectron.Commun.Syst. 60, 319–329 (2017). https://doi.org/10.3103/S0735272717070056

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717070056

Navigation