Skip to main content
Log in

Fusing different measurements and algorithms to improve RFID localization accuracy

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

This paper considers the topic of two-dimensional object localization using radio frequency identification (RFID) technology. One of the important problems that arise during the development of RFID positioning systems is choosing a localization algorithm and a type of measurement data. Usually developers try to find such a combination of an algorithm and measurement type that allows to achieve maximal localization accuracy for a particular scenario. However, in some situations there can be several combinations of algorithms and measurements with equally high accuracy. In order to simplify the choosing problem and to additionally increase accuracy it is developed a combinational localization method. The method is based on averaging position estimates formed by several point-based and zone-based algorithms that process different measurements. In our work there are used three point-based and three zone-based algorithms: a k nearest neighbors algorithm, trilateration, intersectional algorithm, the methods of support vector machine, artificial neural networks, and a naive Bayes classifier. As an input for the algorithms we utilized received signal strength, read rate, and proximity measurements. During the experiments we found that our method decreases the mean error by 15% and the maximum error by 14% compared to the best single algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Zhou, J. Shi, “RFID localization algorithms and applications—a review,” J. Intell. Manuf. 20, No. 6, 695 (Dec. 2009), DOI: 10.1007/s10845-008-0158-5.

  2. N. B. Priyantha, A. Chakraborty, H. Balakrishnan, “The Cricket location-support system,” Proc. of MobiCom, Boston, MA, USA (2000), pp. 32–43, DOI: 10.1145/345910.345917.

    Chapter  Google Scholar 

  3. A. M. Vegni, M. Biagi, “An indoor localization algorithm in a small-cell LED-based lighting system,” Proc. of IPIN, 13–15 Nov. 2012, Sydney, Australia (IEEE, 2012), pp. 1–7, DOI: 10.1109/IPIN.2012.6418887.

  4. H. Suo, J. Wan, L. Huang, C. Zou, “Issues and challenges of wireless sensor networks localization in emerging applications,” Proc. ICCSEE, 23–25 Mar. 2012, Hangzhou, China (IEEE, 2012), Vol. 3, pp. 447–451, DOI: 10.1109/ICCSEE.2012.44.

    Google Scholar 

  5. M. Youssef, A. Agrawala, “The Horus WLAN location determination system,” Proc. MobiSys, Seattle, WA, USA (2005), pp. 205–218, DOI: 10.1145/1067170.1067193.

    Google Scholar 

  6. J. Banks, M. Pachano, L. Thompson, D. Hanny, “The stage is set,” RFID applied. Hoboken, NJ: Wiley, 2007, pp. 3–23, ISBN: 978-0-471-79365-6.

    Chapter  Google Scholar 

  7. D. Zhang, F. Xia, Z. Yang, L. Yao, W. Zhao, “Localization technologies for indoor human tracking,” Proc. FutureTech, 21–23 May 2010, Busan, Korea (IEEE, 2010), pp. 1–6. DOI: 10.1109/FUTURETECH.2010.5482731.

    Google Scholar 

  8. Y. Huang, P. V. Brennan, A. Seeds, “Active RFID location system based on time-difference measurement using a linear FM chirp tag signal,” Proc. PIMRC, 15–18 Sept. 2008, Cannes, France (IEEE, 2008), pp. 1–5, DOI: 10.1109/PIMRC.2008.4699805.

    Google Scholar 

  9. L. M. Ni, Y. Liu, Y. C. Lau, A. P. Patil, “LANDMARC: indoor location sensing using active RFID,” Wireless Networks 10, No. 6, 701 (Nov. 2004), DOI: 10.1023/B:WINE.0000044029.06344.dd.

    Article  Google Scholar 

  10. S. H. Cheng, “An indoor positioning system based on active RFID in conjunction with Bayesian network,” Proc. ICMLC, 10–13 Jul. 2011, Guilin, China (IEEE, 2011), pp. 386–390, DOI: 10.1109/ICMLC.2011.6016710.

    Google Scholar 

  11. Z. N. Zhen, Q.-S. Jia, C. Song, X. Guan, “An indoor localization algorithm for lighting control using RFID,” Proc. Energy 2030, 17–18 Nov. 2008, Atlanta, GA, USA (IEEE, 2008), pp. 1–6, DOI: 10.1109/ENERGY.2008.4781041.

    Google Scholar 

  12. S. Saha, K. Chaudhuri, D. Sanghi, P. Bhagwat, “Location determination of a mobile device using IEEE 802.11b access point signals,” Proc. WCNC, 16–20 Mar. 2003, New Orleans, LA, USA (IEEE, 2003), Vol. 3, pp. 1987–1992, DOI: 10.1109/WCNC.2003.1200692.

    Google Scholar 

  13. S. B. Kotsiantis, “Supervised machine learning: a review of classification techniques,” Proc. of Conf. on Emerging Artificial Intelligence Applications in Computer Engineering, vol. 160, Amsterdam, Netherlands (Amsterdam, IOS Press, 2007), pp. 3–24, http://dl.acm.org/citation.cfm? id=1566770.1566773.

    MathSciNet  MATH  Google Scholar 

  14. J. L. Brchan, L. Zhao, J. Wu, R. E. Williams, L. C. Pérez, “A real-time RFID localization experiment using propagation models,” Proc. IEEE RFID, 3–5 Apr. 2012, Orlando, FL, USA (IEEE, 2012), pp. 141–148, DOI: 10.1109/RFID.2012.6193042.

    Google Scholar 

  15. A. A. N. Shirehjini, A. Yassine, S. Shirmohammadi, “An RFID-based position and orientation measurement system for mobile objects in intelligent environments,” IEEE Trans. Instrum., Meas. 61, No. 6, 1664 (Jun. 2012), DOI: 10.1109/TIM.2011.2181912.

    Article  Google Scholar 

  16. L. M. Ni, D. Zhang, M. R. Souryal, “RFID-based localization and tracking technologies,” IEEE Wireless Commun. 18, No. 2, 45 (Apr. 2011), DOI: 10.1109/MWC.2011.5751295.

    Article  Google Scholar 

  17. S. P. Subramanian, J. Sommer, S. Schmitt, W. Rosenstiel, “RIL—reliable RFID based indoor localization for pedestrians,” Proc. SoftCOM, 25–27 Sept. 2008, Split, Croatia (IEEE, 2008), pp. 218–222, DOI: 10.1109/SOFTCOM.2008.4669483.

    Google Scholar 

  18. M. Laaraiedh, L. Yu, S. Avrillon, B. Uguen, “Comparison of hybrid localization schemes using RSSI, TOA, and TDOA,” Proc. European Wireless, 27–29 Apr. 2011, Vienna, Austria (IEEE, 2011), pp. 1–5, http://ieeexplore.ieee.org/document/5898074/.

    Google Scholar 

  19. D. Macii, A. Colombo, P. Pivato, D. Fontanelli, “A data fusion technique for wireless ranging performance improvement,” IEEE Trans. Instrum., Meas. 62, No. 1, 27 (Jan. 2013), DOI: 10.1109/TIM.2012.2209918.

    Article  Google Scholar 

  20. D. A. Savochkin, “Combinational RFID-based localization using different algorithms and measurements,” Proc. MIKON, 16–18 Jul. 2014, Gdansk, Poland (IEEE, 2014), pp. 563–566, DOI: 10.1109/MIKON.2014.6899958.

    Google Scholar 

  21. H. Liu, H. Darabi, P. Banerjee, J. Liu, “Survey of wireless indoor positioning techniques and systems,” IEEE T SYST MAN CY C 37, No. 6, 1067 (Nov. 2007), DOI: 10.1109/TSMCC.2007.905750.

    Article  Google Scholar 

  22. Y. B. Gimpilevich, D. A. Savochkin, “RFID indoor positioning system based on read rate measurement information,” Proc. ICATT, 16–20 Sept. 2013, Odessa, Ukraine (IEEE, 2013), pp. 546–548, DOI: 10.1109/ICATT.2013.6650842.

    Google Scholar 

  23. K. K. Khedo, D. Sathan, R. Elaheebocus, R. K. Subramanian, S. D. Rughooputh, “Overlapping zone partitioning localisation technique for RFID,” Int. J. of UbiComp 1, No. 2, 20 (Apr. 2010), DOI: 10.5121/iju.2010.1202.

    Article  Google Scholar 

  24. M. Caceres, F. Sottile, M. A. Spirito, “WLAN-based real time vehicle locating system,” Proc. VTC Spring, 26–29 Apr. 2009, Barcelona, Spain (IEEE, 2009), pp. 1–5, DOI: 10.1109/VETECS.2009.5073916.

    Google Scholar 

  25. T. M. Mitchell, “Naive Bayes classifier,” in Machine Learning (McGraw-Hill SEM, 1997), pp. 177–180.

    Google Scholar 

  26. C.-L. Liu, H. Hao, H. Sako, “Confidence transformation for combining classifiers,” Pattern Anal. Applic. 7, No. 1, 2 (Apr. 2004), DOI: 10.1007/s10044-003-0199-5.

    Article  MathSciNet  Google Scholar 

  27. Yu. B. Gimpilevich, D. A. Savochkin, “Simulation of measuring data obtained from RFID-tags in systems of spatial localization of objects,” Radioelectron. Commun. Syst. 59, No. 7, 301 (2016), DOI: 10.3103/S0735272716070037.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. A. Savochkin or Yu. B. Gimpilevich.

Additional information

Original Russian Text © D.A. Savochkin, Yu.B. Gimpilevich, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 5, pp. 297–310.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savochkin, D.A., Gimpilevich, Y.B. Fusing different measurements and algorithms to improve RFID localization accuracy. Radioelectron.Commun.Syst. 60, 233–242 (2017). https://doi.org/10.3103/S0735272717050053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272717050053

Navigation