Skip to main content
Log in

Survey of existing designs of millimeter wave band magnetrons

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

The paper considers main directions of development of pulsed magnetrons of millimeter wave band and presents the main characteristics of such devices produced by different enterprises. This paper is intended for a wide circle of researchers and engineers using the millimeter band magnetrons in their investigations and developments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. J. Bernstein, N. M. Kroll, Conventional Pulsed Rising Sun Magnetrons, in Cross-Field Microwave Devices, Vol. 2 (Academic Press, New York, 1961) [ed. by E. Okress], pp. 224–228.

  2. C. Asema, US Patent 2.734.148 Cl. 315-39.61, Applicant: Compagnie Generale de Telegraphe Sans Pil.

  3. J. Feinstein, US Patent 2.951.182, Cl. 315-39.77 (1960).

    Google Scholar 

  4. N. I. Skripkin, A. A. Gurko, and V. P. Marin, “A possibility of creating the pulsed coaxial magnetron of the two-millimeter wavelength band,” Naukoemkie Tekhnologii 6, No. 7–8, 17 (2006).

    Google Scholar 

  5. A. A. Gurko and V. D. Yeryomka, “The state and prospects of the development of magnetrons operating in the millimeter wavelength band,” Proc. of 10th Int. Crimean Conf. on Microwave Equipment and Telecommunication Technologies, Krymiko-2000, 11–15 Sept. 2000, Crimea, Ukraine (Veber, Sevastopol, 2000).

    Google Scholar 

  6. I. D. Truten’, I. G. Krupatkin, O. N. Baranov, N. N. Galushko, and V. E. Ignatov, “Pulsed magnetrons of the millimeter wave band in the spatial harmonic mode,” Ukr. J. Phys. 20, No. 7, 1170 (1975).

    Google Scholar 

  7. A. Ya. Usikov (ed.), Electronics and Radio Physics of Millimeter and Submillimeter Radio Waves [in Russian] (Naukova Dumka, Kyiv, 1986).

    Google Scholar 

  8. G. B. Collins (ed.), Microwave Magnetrons (McGraw Hill, N.Y., 1948).

    Google Scholar 

  9. A. V. Atlasman, A. A. Gurko, I. D. Truten’, et al., “On the physical conditions of stable single-frequency generation in surface-wave magnetrons,” Works of IRE AS of USSR 18, 5 (1970).

    Google Scholar 

  10. M. F. Kopylov, B. V. Bondarenko, V. I. Makhov, and V. A. Nazarov, SU Patent No. 1780444, Byull. Izobr., No. 8 (1994).

  11. M. F. Kopylov, “Design and technology features of heating-free magnetrons with autoemission exitation,” J. Vacuum Sci. Technol. B: Microelectron. Nanometer Structures Processing, Measurement, and Phenomena 11, No. 2, 481 (1993), DOI: 10.1116/1.586845.

    Article  Google Scholar 

  12. A. A. Gurko, V. D. Yeryomka, V. D. Naumenko, and N. I. Skripkin, “On physical processes in production of spatial charge in a heating-free magnetron with field emission triggering,” Telecom. Radio Eng. 68, No. 6, 507 (2009), DOI: 10.1615/TelecomRadEng.v68.i6.40.

    Article  Google Scholar 

  13. P. L. Spencer, US Patent 3.109.123, Cl. 315-39.63, Priority in the USA (1962).

    Google Scholar 

  14. M. N. Zybin, “Channelless magnetrons: yesterday, today, and tomorrow,” Electronics: Science, Technology, Business, No. 3, 90 (2011), http://www.electronics.ru/journal/article/2792.

    Google Scholar 

  15. R. L. Jepsen, M. W. Muller, “Enhanced emission from magnetron cathodes,” J. Appl. Phys. 22, No. 9, 1196 (1951), DOI: 10.1063/1.1700133.

    Article  Google Scholar 

  16. I. M. Vigdorchik, V. D. Naumenko, and V. P. Timofeev, “Pulsed magnetrons with cold secondary-emission cathode,” DAN USSR. Ser. A: Fiziko-Matem. i Techn. Nauki, No. 7, 634 (1975).

    Google Scholar 

  17. I. M. Vigdorchik and V. D. Naumenko, “Millimeter-wave band magnetrons with cold cathode,” Works of IRE AS of USSR XXV, 25 (1979).

  18. Vasily Naumenko, Alexander Suvorov, Alexey Sirov, “Tunable magnetron of a two-millimeter-wavelength band,” Microw. Opt. Technol. Lett. 12, No. 3, 129 (1996), DOI: 10.1002/(SICI)1098-2760(19960620)12: 3%3c129::AID-MOP3%3e3.0.CO;2-J.

    Article  Google Scholar 

  19. V. D. Naumenko, A. N. Suvorov, and A. E. Moiseenko, “High-power pulsed magnetrons of 95 GHz band,” Proc. of 21st Int. Crimean Conf. on Microwave Equipment and Telecommunication Technologies, KryMiKo-2011, 12–16 Sept. 2011, Crimea, Ukraine. (Veber, Sevastopol, 2011).

    Google Scholar 

  20. V. D. Naumenko, K. Schunemann, D. M. Vavriv, “Miniature 1 kW, 95 GHz magnetrons,” Electron. Lett. 35, No. 22, 1960 (1999), DOI: 10.1049/el:19991337.

    Article  Google Scholar 

  21. A. E. Moiseenko, V. D. Naumenko, A. N. Suvorov, and A. R. Syrov, “Long life 3 mm pulsed magnetron,” Radio Physics and Radio Astronomy 8, No. 4, 421 (2003), http://journal.rian.kharkov.ua/index.php/ra/article/view/767.

    Google Scholar 

  22. V. D. Naumenko, A. N. Suvorov, V. A. Markov, N. I. Avtomonov, V. D. Yeryomka, M. A. Korol’, O. P. Kulagin, Jung-Il Kim, “Development of Ka-range magnetron for portable radar,” Proc. of 20th Int. Crimean Conf. on Microwave & Telecommunication Technology, CriMiCo’2010, 13–17 Sept. 2010, Sevastopol, Crimea, Ukraine (IEEE, 2010), pp. 305–307, DOI: 10.1109/CRMICO.2010.5632848.

    Google Scholar 

  23. N. I. Avtomonov, V. D. Naumenko, D. M. Vavriv, Klaus Schunemann, A. N. Suvorov, V. A. Markov, “Toward terahertz magnetrons: 210-GHz spatial-harmonic magnetron with cold cathode,” IEEE Trans. Electron Devices 59, No. 12, 3608 (2012), DOI: 10.1109/TED.2012.2217974.

    Article  Google Scholar 

  24. V. D. Yeryomka, O. P. Kulagin, and V. D. Naumenko, “Development and investigation of magnetrons in the O. Ya. Usik Institute for Radiophysics and Electronics and the Institute of Radio Astronomy of NASU,” Radiofiz. Elektron. 9, 42 (2004).

    Google Scholar 

  25. V. D. Yeryomka and V. D. Naumenko, “Investigation into and development of millimeter-wave band magnetrons in Kharkov,” Uspekhi Sovremennoi Radioelektroniki. Zarubezhnaya Radioelektronika, No. 4, 23 (2008), http://www.radiotec.ru/catalog.php?cat=jr4&art=2125.

    Google Scholar 

  26. L. V. Kasatkin, V. P. Rukin, V. D. Yeryomka, et al., Vacuum-Tube Devices of Millimeter Wave Band [in Russian, ed. by V. P. Rukin] (Veber, Sevastopol, 2007).

  27. S. V. Gritsaenko, V. D. Yeryomka, M. A. Kopot’, O. P. Kulagin, V. D. Naumenko, and A. N. Suvorov, “Multiresonator magnetrons with cold secondary-emission cathode: advances, problems and prospects,” Radiofiz. Elektron. 10, 499 (2005).

    Google Scholar 

  28. B. Vyse, V. H. Smith, “The evolution of miniature rugged magnetrons,” Proc. of 2nd Conf. on Military microwaves’ 80, London, England, October 22–24, 1980. (A82-18901 07-32), Sevenoaks, Kent, England (Microwave Exhibitions and Publishers, Ltd., 1981), pp. 506–513.

    Google Scholar 

  29. L. V. Kasatkin, “Pulsed generators under conditions of phase locking by a pulsed coherent signal (coherent magnetrons),” Radioelectron. Commun. Syst. 49, No. 4, 26 (2006), http://radioelektronika.org/article/view/S0735272706040054.

    MathSciNet  Google Scholar 

  30. V. P. Eremin, L. I. Matselis, A. V. Pastukhova, and O. M. Khokhlova, “Generating two-stage complexation device of 3-mm wavelength band with electrical frequency tuning and output power of 10 kW,” Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6–8 Sept. 2011, Nizhegorodskaya Oblast, Khakhaly, Nizhniy Novgorod, Russia (2011).

    Google Scholar 

  31. I. Ivanov, N. Petyushin, and N. Skripkin, “Power combiner of magnetrons of 3-millimeter wavelength band,” Electronics: Science, Technology, Business, No. 5, 92 (2015), http://www.electronics.ru/journal/article/4713.

    Google Scholar 

  32. I. M. Ivanov, M. V. Efremova, N. I. Skripkin, et al., “Calculation and experimental investigation of power combiner of 3-mm band magnetrons with power output into free space by three coherent radiators,” Elekronnaya Tekhnika, Ser. 1. Elektronika SVCh, No. 3, 22 (2015).

    Google Scholar 

  33. R. V. Donetsky, I. M. Ivanov, N. V. Petyushin, and N. I. Skripkin, “Regenerative amplifier on synchronized magnetrons of three millimeter wavelength band,” Naukoemkie Tekhnologii, No. 11, 51 (2015), http://www.radiotec.ru/catalog.php?cat=jr8&art=17026.

    Google Scholar 

  34. V. D. Naumenko and R. P. Fedii, “Millimeter band pulsed magnetron in the self-synchronization mode,” Izv. Vyssh. Uchebn. Zaved., Radiofizika 29, No. 11, 1399 (1986).

    Google Scholar 

  35. http://www.salut.nn.ru/.

  36. http://www.pluton.msk.ru/catalog/.

  37. N. I. Skripkin, “Magnetrons of 2-mm wavelength band: new developments of Pluton company,” Electronics: Science, Technology, Business, No. 7, 66 (2011), http://www.electronics.ru/journal/article/3034.

    Google Scholar 

  38. http://www.oao-tantal.ru/cat.php.

  39. A. V. Lyashenko, A. A. Solopov, E. A. Fedorenko, et al., “High-power pulsed 3-mm magnetron with service life of 2000 hours,” Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6–8 Sept. 2011, Nizhegorodskaya Oblast, s. Khakhaly, Nizhniy Novgorod, Russia (2011).

    Google Scholar 

  40. http://www.salut.nn.ru/index.php/mamp/50—.html.

  41. S. Kh. Zav’yalov and A. A. Tsukanov, “Pulsed coaxial magnetron of 2 mm wavelength band,” Proc. of XVII Koord. Nauchno-Tekh. Seminara po SVCh Tekhnike, 6–8 Sept. 2011, Nizhegorodskaya Oblast, s. Khakhaly, Nizhniy Novgorod, Russia (2011).

    Google Scholar 

  42. K. Schunemann, S. V. Sosnytskiy, D. M. Vavriv, “Self-consistent simulation of the spatial-harmonic magnetron with cold secondary-emission cathode,” IEEE Trans. Electron. Devices 48, No. 5, 993 (2001), DOI: 10.1109/16.918248.

    Article  Google Scholar 

  43. Nasrin Nasr Esfahani, Klaus Schünemann, Nickolay Avtomonov, Dmytro Vavriv, “Epsilon near zero loaded magnetrons, design and realization,” Proc. of 45th European Microwave Conf., 7–10 Sept. 2015, Paris, France (IEEE, 2015), pp. 454–457, DOI: 10.1109/EuMC.2015.7345798.

    Google Scholar 

  44. Klaus Schuenemann, A. E. Serebryannikov, S. V. Sosnytskiy, D. M. Vavriv, “Optimizing the spatial-harmonic millimeter-wave magnetron,” Phys. Plasmas 10, No. 6, 2559 (2003), DOI: 10.1063/1.1565337.

    Article  Google Scholar 

  45. Shengen Li, Fengling Li, Jinsheng Yang, Tiechang Yan, Bo Du, Wei Shi, “Development of a miniaturized W-band spatial harmonic magnetron,” IEEE Trans. Electron Devices 63, No. 6, 2925 (2016), DOI: 10.1109/TED.2016.2569002.

    Article  Google Scholar 

  46. M. B. Golant, A. A. Maklakov, and M. B. Shur, Manufacture of Resonators and Slowing Structures of Electronic Devices [in Russian] (Sov. Radio, Moscow, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. D. Naumenko.

Additional information

Original Russian Text © V.D. Naumenko, 2017, published in Izvestiya Vysshikh Uchebnykh Zavedenii, Radioelektronika, 2017, Vol. 60, No. 4, pp. 181–205.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naumenko, V.D. Survey of existing designs of millimeter wave band magnetrons. Radioelectron.Commun.Syst. 60, 141–160 (2017). https://doi.org/10.3103/S073527271704001X

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S073527271704001X

Navigation