Skip to main content
Log in

Enhancing the spectral analysis efficiency at low signal-to-noise ratios using the technology of surrogate data without the segmentation of observation

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

A comparative analysis of two methods of estimating the observation correlation matrix (CM) based on obtaining an ensemble of its segments and a pseudo-ensemble obtained by applying the technology of surrogate data. It was shown that in the range of small values of the signal-to-noise ratio the error of CM estimation using the pseudo-ensemble was less than that of the CM estimation using the observation segmentation. Since the CM estimation is a basic procedure in advanced methods of spectral analysis, this study showed (by using simulation) that the application of observation pseudo-ensemble made it possible to avoid the segmentation of observations, which causes the reduction of spectral analysis resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Efron, Nonconventional Methods of Multivariate Statistical Analysis (Finansy i Statistika, Moscow, 1988) [in Russian, translation from English of articles collection], 263 p.

    Google Scholar 

  2. A. I. Orlov, Econometrics (Ekzamen, Moscow, 2002) [in Russian], 576 p.

    Google Scholar 

  3. V. K. Shitikov and G. S. Rozenberg, Randomization and Bootstrap: Statistical Analysis of Data in the Field of Biology and Ecology Using R (Tolyatti, 2013) [in Russian].

    Google Scholar 

  4. A. M. Zoubir, B. Boashash, “The bootstrap: Signal processing applications,” IEEE SP Magazine (Signal Processing) 15, 56 (1998).

    Article  Google Scholar 

  5. James S. Theiler, Stephen Eubank, Andre Longtin, Bryan Galdrikian, J. Doyne Farmer, “Testing for nonlinearity in time series: the method of surrogate data,” PhysicaD 58, Nos. 1–4, 77 (Sept. 1992), PII: 016727899290102S.

    MATH  Google Scholar 

  6. M. Small, Applied Nonlinear Time Series Analysis Applications in Physics, Physiology and Finance (World Scientific Publishing Co. Pte. Ltd., 2005), 245 p.

    MATH  Google Scholar 

  7. P. Yu. Kostenko, K. S. Vasiuta, V. V. Slobodyanyuk, D. S. Yakovenko, “The use of surrogate signals for enhancing the estimation quality of parameters of regular and chaotic signals observed against the background of additive noise,” Systems of Control, Navigation and Communications, No. 4, 28 (2010).

    Google Scholar 

  8. P. Yu. Kostenko, V. I. Vasylyshyn, S. N. Symonenko, O. V. Vysotskii, D. S. Yakovenko, “Enhancing the efficiency of coherent processing of chaotic signals during the transmission of binary messages using surrogate signals,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 55(7), 24 (2012), http://radio.kpi.ua/article/view/S0021347012070035 [Radioelectron. Commun. Syst. 55(7), 307 (2012), DOI: 10.3103/S0735272712070035].

    Google Scholar 

  9. A. B. Gershman, J. F. Bohme, “A pseudo-noise approach to direction finding,” Signal Processing 71, 1 (May 1998), DOI: 10.1016/S0165-1684(98)00130-3.

    Article  MATH  Google Scholar 

  10. V. Vasylyshyn, “Removing the outliers in root-MUSIC via pseudo-noise resampling and conventional beamformer,” Signal Processing 93, No. 12, 3423 (2013), DOI: 10.1016/j.sigpro.2013.05.026.

    Article  Google Scholar 

  11. Enno Mammen, Swagata Nandi, Thomas Maiwald, Jens Timmer, “Effect of jump discontinuity for phase-randomized surrogate data testing,” Int. J. Bifurcation Chaos 19, No. 1, 403 (Jan. 2009), DOI: 10.1142/S0218127409022968.

    Article  MATH  Google Scholar 

  12. Alex B. Gershman, “Pseudo-randomly generated estimator banks: a new tool for improving the threshold performance of direction finding,” IEEE Trans. Signal Process. 46, No. 5, 1351 (May 1998), DOI: 10.1109/78.668797.

    Article  Google Scholar 

  13. V. I. Vasylyshyn, “Direction finding with superresolution using root implementation of eigenstructure techniques and joint estimation strategy,” in Proc. of European Conf. on Wireless Technology, 11–12 Oct. 2004, Amsterdam, Netherlands (Amsterdam, 2004), pp. 101–104.

  14. V. I. Vasylyshyn, “Enhancing the spectral analysis efficiency by eigenstructure methods using the surrogate data technology for eigenvectors of the covariance observation matrix,” Radiotekhnika (Kharkiv), No. 174, 66 (2013).

    Google Scholar 

  15. P. Yu. Kostenko, V. I. Vasylyshyn, “Enhancing the efficiency of spectral analysis of signals by the Root-MUSIC method using surrogate data,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 57(1), 31 (2014), http://radio.kpi.ua/article/view/S0021347014010026 [Radioelectron. Commun. Syst. 57(1), 31 (2014), DOI: 10.3103/S0735272714010026].

    Google Scholar 

  16. V. I. Vasylyshyn, “Adaptive correction of preliminary processing of signals using the technology of surrogate data in spectral analysis problems,” Syst. Obrob. Inf., No. 2, 15 (2013).

    Google Scholar 

  17. V. I. Vasylyshyn, “Enhancing the spectral analysis efficiency by the ESPRIT method using the technology of surrogate data,” Prikladnaya Radioelektronika 12, No. 3, 412 (2013).

    Google Scholar 

  18. V. I. Vasylyshyn, “Estimating the number of harmonic components of a signal with using surrogate data technology,” Prikladnaya Radioelektronika 12, No. 4, 542 (2013).

    Google Scholar 

  19. V. I. Vasylyshyn, “Analysis of the spectral analysis procedure error using the surrogate data technology,” Syst. Obrob. Inf., No. 1, 3 (2014).

    Google Scholar 

  20. P. Yu. Kostenko, V. I. Vasylyshyn, “Signal processing correction in spectral analysis using the surrogate autocovariance observation functions obtained by the ATS-algorithm,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 57(6), 3 (2014), http://radio.kpi.ua/article/view/S0021347014060016 [Radioelectron. Commun. Syst. 57(6), 235 (2014), DOI: 10.3103/S0735272714060016].

    Google Scholar 

  21. S. L. Marple Jr., Digital Spectral Analysis with Applications (Prentice-Hall, New Jersey, 1986).

    Google Scholar 

  22. P. Stoica and R. L. Moses, Introduction to Spectral Analysis (Prentice-Hall, 1997).

    MATH  Google Scholar 

  23. V. I. Vasylyshyn, A. N. Kolesnikov, “Uniform linear antenna array in superresolution mode by the modified unitary ESPRIT algorithm,” in Proc. of III Int. Conf. on Antenna Theory and Techniques, 8–11 Sept. 1999, Sevastopol, Ukraine (Sevastopol, 1999), pp. 254–255, http://icatt.org.ua/proc/article/view/ICATT.1999.1236181 .

    Google Scholar 

  24. V. I. Vasylyshyn, “High-resolution phased array signal processing via DFT beamspace TLS-ESPRIT with structure weighting,” in Proc. IEEE Int. Symp. on Phased Array Systems and Technology, 14–17 Oct. 2003, Boston, Massachusetts, USA (IEEE, 2003), pp. 605–610, DOI: 10.1109/PAST.2003.1257049.

    Chapter  Google Scholar 

  25. M. Wax, Tie-Jun Shan, T. Kailath, “Spatio-temporal spectral analysis by eigenstructure methods,” IEEE Trans. Signal Process. 32, No. 4, 817 (Aug. 1984), DOI: 10.1109/TASSP.1984.1164400.

    Article  Google Scholar 

  26. Petre Stoica, Anders Eriksson, “MUSIC estimation of real-valued sine-wave frequencies,” Signal Processing 42, No. 2, 139 (Mar. 1995), DOI: 10.1016/0165-1684(94)00123-H.

    Article  MATH  Google Scholar 

  27. V. I. Vasylyshyn, M. V. Grushenko, A. N. Kolesnikov, “Efficiency of the modified spatial smoothing method,” Zbirnyk Naukovykh Prats KhUPS, No. 1, 89 (2005).

    Google Scholar 

  28. A. B. Gershman, V. T. Ermolaev, “Optimal subarray size for spatial smoothing,” IEEE Signal Process. Lett. 2, No. 2, 28 (Feb. 1995), DOI: 10.1109/97.365531.

    Article  Google Scholar 

  29. A. V. Tarakanov, “Analysis of the possible increase of digital radar resolution,” in Proc. of Int. Conf. on Digital Signal Processing and Applications, DSPA-2009, Russia (2009), pp. 359–362.

    Google Scholar 

  30. Pierre Borgnat, Patrick Flandrin, “Stationarization via surrogates,” J. Stat. Mech., P01001 (2009), DOI: 10.1088/1742-5468/2009/01/P01001.

    Google Scholar 

  31. A. J. Barabell, “Improving the resolution performance of eigenstructure based direction-finding algorithms,” in Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, ICASSP’83, Apr. 1983, Boston, MA (IEEE, 1983), Vol. 8, pp. 336–339, DOI: 10.1109/ICASSP.1983.1172124.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vasylyshyn.

Additional information

Original Russian Text © P.Yu. Kostenko, V.I. Vasylyshyn, 2015, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2015, Vol. 58, No. 2, pp. 36–47.

ORCID: 0000-0002-3382-0684

ORCID: 0000-0002-5461-0125

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostenko, P.Y., Vasylyshyn, V.I. Enhancing the spectral analysis efficiency at low signal-to-noise ratios using the technology of surrogate data without the segmentation of observation. Radioelectron.Commun.Syst. 58, 75–84 (2015). https://doi.org/10.3103/S0735272715020041

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272715020041

Keywords

Navigation