Skip to main content
Log in

Pseudooctonary near maximum likelihood detector

  • Published:
Radioelectronics and Communications Systems Aims and scope Submit manuscript

Abstract

Paper introduces two new near maximum likelihood detectors: pseudooctonary and modified pseudooctonary detectors. These two detectors are tested against pseudoquaternary near maximum likelihood detector using data transmission at 9.6 kb/s over telephone channel. Simulation results show that the performance of pseudooctonary detector is better than performance of modified pseudooctonary detector and the latter is better than pseudoquaternary detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Proakis, Digital Communications, 4th ed. (McGraw-Hill, New York, 2000).

    Google Scholar 

  2. G. D. Forney, “Maximum-likelihood sequence estimation of digital sequences in the presence of intersymbol interference,” IEEE Trans. Inf. Theory. 18, No. 3, 363–378 (1972). DOI: 10.1109/TIT.1972.1054829.

    Article  MathSciNet  MATH  Google Scholar 

  3. G. D. Forney, Jr., “The Viterbi algorithm,” Proc. IEEE 61, No. 3, 268 (1973). DOI: 10.1109/PROC.1973.9030.

    Article  MathSciNet  Google Scholar 

  4. S. Aldosari, S. A. Alshebeili, A. M. Al-Sanie, “Effective MSE criterion for combined linear-Viterbi equalization,” in Proc. of IEEE Int. Conf. Communication Systems, Singapore (2000).

    Google Scholar 

  5. S. A. Aldosari, S. A. Alshebeili, A. M. Al-Sanie, “Combined linear-decision feedback sequence estimation: an improved system design,” in Proc. of IEEE Int. Symp. Circuits and Systems, Australia (2001), Vol. 2, pp. 261–264. DOI: 10.1109/ISCAS.2001.921057.

    Google Scholar 

  6. C. Beare, “The choice of the desired impulse response in combined linear-Viterbi algorithm equalizers,” IEEE Trans. Commun. 26, No. 8, 1301 (1978). DOI: 10.1109/TCOM.1978.1094214.

    Article  Google Scholar 

  7. D. D. Falconer, F. R. Magee, Jr., “Adaptive channel memory truncation for maximum likelihood sequence estimation,” Bell Sys. Tech. J. 52, No. 9, 1541 (1973).

    Article  MATH  Google Scholar 

  8. N. Sundstrom, O. Edfors, P. Odling, H. Eriksson, T. Koski, P. O. Borjesson, “Combined linear-Viterbi equalizer: A comparative study and a minimax design,” in Proc. 44th IEEE Vehicular Technology Conf. (1994), pp. 1263–1267. DOI: 10.1109/VETEC.1994.345297.

    Google Scholar 

  9. M. AL-Rawi, et al., “Computer simulation for newly designed 9.6 kb/s data transmission system over standard ADPCM,” in Ninth Int. Conf. on Microelectronics, Bandung, Indonesia (1997).

    Google Scholar 

  10. M. AL-Rawi, “Newly designed 9.6 kb/s data transmission system over various algorithms of ADPCM,” Ph.D. Dissertation (Bandung Institute of Technology, Indonesia, 1998).

    Google Scholar 

  11. T. Chien-cheng, US Patent No. 7197094 (2007).

  12. A. Duel-Hallen, C. Heegard, “Delayed decision-feedback sequence estimation,” IEEE Trans. Commun. 37, No. 5, 428 (1989). DOI: 10.1109/26.24594.

    Article  Google Scholar 

  13. R. E. Kamel, Y. Bar-Ness, “Reduced-complexity sequence estimation using state partitioning,” IEEE Trans. Commun. 44, No. 9, 1057 (1996). DOI: 10.1109/26.536909.

    Article  Google Scholar 

  14. C. H. Myburgh, J. C. Olivier, “Low complexity iterative MLSE equalization of M-QAM signals in extremely long Rayleigh fading channels,” IEEE EUROCON, Saint-Petersburg, Russia (2009).

    Google Scholar 

  15. Yanjie Peng, Kai Zhang, A. G. Klein, Xinming Huang, “Complexity and performance tradeoffs of near-optimal detectors for cooperative ISI channels,” in Proc. of IEEE Int. Conf. Military Communications, MILCOM’2010 (2010), pp. 1753–1758. DOI: 10.1109/MILCOM.2010.5680238.

    Google Scholar 

  16. M. V. Eyuboglu, S. U. H. Qureshi, “Reduced-state sequence estimation with set partitioning and decision feedback,” IEEE Trans. Commun. 36, No. 1, 13 (1988). DOI: 10.1109/26.2724.

    Article  Google Scholar 

  17. A. Stephen, L. Quinn, US Patent No. 20100202507 (2010).

  18. K. Takizawa, R. Kohno, “Low-complexity Viterbi equalizer for MBOK DS-UWB systems,” IEICE Trans. Fund. Elec., Commun. Computer Sci. E88-A, No. 9, 2350 (2005).

    Article  Google Scholar 

  19. A. Turner-Barnes, S. Bibyk, “Is hybrid combination of Viterbi detector and decision feedback equalizer feasible in electrical SerDes?,” in Proc. of DesignCon-2010, 1–4 February, 2010, Santa Clara, California, USA (Ohio State University, USA, 2010), p. 1054.

    Google Scholar 

  20. M. AL-Rawi, M. AL-Rawi, “Detection processes for mitigating intersymbol interference,” Int. Proc. Computer Sci. Inf. Technol. 19, 125 (2011).

    Google Scholar 

  21. A. P. Clark, J. D. Harvey, J. P. Driscoll, “Near-maximum-likelihood detection processes for distorted digital signals,” Radio Electron. Eng. 48, No. 6, 301 (1978). DOI: 10.1049/ree.1978.0043.

    Article  Google Scholar 

  22. A. P. Clark, M. Clayden, “Pseudobinary Viterbi detector,” IEE Proc. F: Commun. Radar Signal Process. 131, No. 2, 208 (1984). DOI: 10.1049/ip-f-1:19840034.

    Article  Google Scholar 

  23. A. Clark, S. Abdullah, S. Jayasinghe, Keung Sun, “Pseudobinary and pseudoquaternary detection processes for linearly distorted multilevel QAM signals,” IEEE Trans. Commun. 33, No. 7, 639 (1985). DOI: 10.1109/TCOM.1985.1096351.

    Article  Google Scholar 

  24. A. P. Clark, S. N. Abdullah, “Near-maximum-likelihood detectors for voiceband channels,” IEE Proc. F: Commun. Radar Signal Process. 134, No. 3, 217 (1987). DOI: 10.1049/ip-f-1:19870047.

    Article  Google Scholar 

  25. S. N. Abdullah, “Improved data detection processes using retraining over telephone lines,” J. Engineering 15, No. 1, 3336 (2009).

    MathSciNet  Google Scholar 

  26. Muhanned AL-Rawi, Muaayed AL-Rawi, “Equalized near maximum likelihood detector,” Izv. Vyssh. Uchebn. Zaved., Radioelektron. 55(12), 53 (2012) [Radioelectron. Commun. Syst. 55 (12), 568 (2012)]. DOI: 10.3103/S0735272712120072.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Muhanned AL-Rawi, Muaayed AL-Rawi, 2013, published in Izv. Vyssh. Uchebn. Zaved., Radioelektron., 2013, Vol. 56, No. 9, pp. 50–56.

About this article

Cite this article

AL-Rawi, M., AL-Rawi, M. Pseudooctonary near maximum likelihood detector. Radioelectron.Commun.Syst. 56, 460–463 (2013). https://doi.org/10.3103/S0735272713090069

Download citation

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0735272713090069

Keywords

Navigation