Skip to main content
Log in

Application of Hydrothermal Carbonization to Improve the Energy Properties of Peat

  • Published:
Solid Fuel Chemistry Aims and scope Submit manuscript

Abstract

The influence of the process conditions of hydrothermal carbonization (temperature, process duration, the presence of a catalyst (citric acid), and the raw material/water ratio) on the properties of hydrochar obtained from peat was studied. The following regularities were found: the weight and energy yields of the hydrochar decreased with the temperature and reaction time. An increase in the reaction temperature from 170 to 230°С contributed to an increase in the calorific value (from 23.86 to 26.8 MJ/kg for the gross calorific value and from 22.26 to 25.02 MJ/kg for the net calorific value). An increase in the reaction time from 1 to 6 h also led to an increase in the calorific value (from 22.72 to 24.61 MJ/kg for the gross calorific value and from 24.61 to 23.20 MJ/kg for the net calorific value). The addition of a catalyst increased the gross and net calorific values of hydrochar by 6 and 6.2%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. https://iz.ru/681794/arsenii-pogosian/torf-priravniaiut-k-alternativnoi-energetike.

  2. Yazev, V.A. and Ermolovich, M.N., Gosudarstvennoe stimulirovanie razvitiya torfyanoi otrasli. Rekomendatsii parlamentskikh slushanii (State Incentives for the Development of the Peat Industry: Parliamentary Hearing Recommendations), Moscow: Izd. Gos. Dumy, 2011.

  3. https://riss.ru/analitycs/2474/.

  4. Timofeeva, S.S. and Mingaleeva, G.R., Izv. TPU, 2014, vol. 325, no. 4, p. 46.

    Google Scholar 

  5. Panov, V.V. and Misnikov, O.S., Tr. Instorfa, 2018, vol. 11, no. 64, p. 3.

    Google Scholar 

  6. Reza, M., Hydrothermal Carbonization of Lignocellulosic Biomass, Ph.D. Thesis, 2013.

  7. Wilk, M. and Magdziarz, A., Energy, 2017, vol. 140, p. 1292.

    Article  CAS  Google Scholar 

  8. Zhai, Y., Peng, C., Xu, B., Wang, T., Li, C., Zeng, G., and Zhu, Y., Energy, 2017, vol. 127, p. 167.

    Article  CAS  Google Scholar 

  9. Escala, M., Zumbuhl, T., Koller, C., Junge, R., and Krebs, R., Energy Fuel, 2012, vol. 27, no. 1, p. 454.

    Article  Google Scholar 

  10. Faradilla, R.F., Lucia, L., and Hakovirta, M., Nanomaterials, 2020, vol. 10, no. 6, p. 1049.

    Article  CAS  Google Scholar 

  11. Beskov, S.D., Tekhno-khimicheskie raschety (Technochemical Calculations), Moscow, Vysshaya Shkola, 1962.

  12. Funke, A. and Ziegler, F., Biofuel. Bioprod. Bior., 2010, vol. 4, p. 4160.

    Article  Google Scholar 

  13. Smith, A., Singh, S., and Ross, A., Fuel, 2016, vol. 169, p. 135.

    Article  CAS  Google Scholar 

  14. Wang, L., Chang, Y., and Li, A., Renew. Sust. Energ. Rev., 2019, vol. 108, p. 423.

    Article  CAS  Google Scholar 

  15. Barta-Rajnai, E., Babinszki, B., Sebestyen, Z., Istvan, C.S., May, Z., and Jakab, E., J. Anal. Appl. Pyrolysis, 2018, vol. 135, p. 32.

    Article  CAS  Google Scholar 

  16. Kambo, H. and Dutta, A., Energ. Convers. Manage., 2015, vol. 105, p. 746.

    Article  CAS  Google Scholar 

  17. Reza, M., Lynam, J., Helal, U.C., and Coronella, M., Biomass. Bioenerg., 2013, vol. 49, p. 86.

    Article  CAS  Google Scholar 

  18. Demirbas, A., Prog. Energ. Combust. Sci., 2005, vol. 31, no. 2, p. 171.

    Article  CAS  Google Scholar 

  19. Titirici, M.M. and Antonietti, M., Chem. Soc. Rev., 2010, vol. 39, p. 103.

    Article  CAS  Google Scholar 

  20. Liu, H., Yingquan, C., Haiping, Y., Gentili, F., Soderlind, U., Wang, X., Zhang, W., and Chen, H., Fuel, 2019, vol. 249, p. 441.

    Article  CAS  Google Scholar 

  21. Yao, Z. and Ma, X., Bioresour. Technol., 2019, vol. 282, p. 28.

    Article  CAS  Google Scholar 

Download references

Funding

The study was supported by the Russian Foundation for Basic Research (project no. 20-08-00862 A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. O. Krysanova, A. Yu. Krylova or V. M. Zaichenko.

Additional information

Translated by V. Makhlyarchuk

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krysanova, K.O., Krylova, A.Y. & Zaichenko, V.M. Application of Hydrothermal Carbonization to Improve the Energy Properties of Peat. Solid Fuel Chem. 55, 123–128 (2021). https://doi.org/10.3103/S0361521921020026

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0361521921020026

Keywords:

Navigation