Physicochemical and Electrophysical Properties of Carbon Materials Based on Humic Acids

Abstract

The chemical analysis of humic acids and their activated forms based on brown coal from the Maikuben coal basin (Kazakhstan) was carried out. The humic acids were obtained on the basis of potassium humates. Activated humic acids (AHAs) were prepared by carbonization and activation in argon and water vapor atmospheres at 873 K, and the physicochemical characteristics and surface morphology of the test samples were studied. The electrical resistance (R), electric capacitance (C), and dielectric constant (ε) of the samples in a temperature range of 293–483 K were determined for the first time. The samples obtained were tested as an adsorbent for water treatment in order to remove heavy metals.

This is a preview of subscription content, access via your institution.

Fig. 1.

REFERENCES

  1. 1

    Ermagambet, B.T., Kasenov, B.K., Kazankapova, M.K., Nurgaliev, N.U., Kasenova, Zh.M., Kuanyshbekov, E.E., and Nauryzbaeva, A.T., Solid Fuel Chem., 2020, vol. 54, no. 3, p. 180. https://doi.org/10.3103/S0361521920030039

    CAS  Article  Google Scholar 

  2. 2

    Azizov, T.M. and Vlasov, V.I., Basseiny i mestorozhdeniya uglei i goryuchikh slantsev Kazakhstana. Spravochnik (Coal and Oil Shale Basins and Deposits in Kazakhstan: A Handbook), Almaty: Inst. Geol. Nauk im. K.I. Satpaeva, 1997, p. 112.

  3. 3

    Ermagambet, B.T., Kasenov, B.K., Kasenova, Sh.B., Bekturganov, N.S., and Nabiev, M.A., Solid Fuel Chem., 2015, vol.49, no.6, p. 343. https://doi.org/10.3103/S0361521915060038

    CAS  Article  Google Scholar 

  4. 4

    Khabibullin, E.R., Ismagilova, Z.R., Zhuravleva, N.V., Sozinov, S.A., Lyrshchikov, S.Yu., Furega, R.I., Khitsova, L.M., and Potokina, R.R., VII Mezhdunar. Rossiisko-Kazakhstansk. simp. Uglekhimiya i Ekologiya Kuzbassa (VII Int. Ross.–Kazakhst. Symp. Coal Chemistry and Ecology of Kuzbas), Kemerovo: FITs UUKh Sib. Otd. Ross. Akad. Nauk, 2018, p. 99.

  5. 5

    Ermagambet, B.T., Kasenov, B.K., Nurgaliev, N.U., Kasenova, Zh.M., Nabiev, M.A., and Shalabaev, Zh.A., Tekhnologii glubokoi pererabotki uglei Kazakhstana. Monografiya (Technologies for the Deep Processing of Coal in Kazakhstan: A Monograph), Dusseldorf: LAP LAMBERT Acad. Publ., 2017.

  6. 6

    Ermagambet, B.T., Kasenov, B.K., Nurgaliev, N.U., Nabiev, M.A., Kasenova, Zh.M., Kazankapova, M.K., and Zikirina, A.M., Solid Fuel Chem., 2018, vol. 52, no. 2, p. 11. https://doi.org/10.3103/S0361521918020039

    Article  Google Scholar 

  7. 7

    Ermagambet, B.T., Kasenov, B.K., Nurgaliev, N.U., Kazankapova, M.K., Kasenova, Zh.M., and Zikirina, A.M., Solid Fuel Chem., 2018, vol. 52, no.5, p. 302. https://doi.org/10.3103/S036152191805004X

    CAS  Article  Google Scholar 

  8. 8

    Popov, A.I., Guminovye veshchestva: svoistva, stroenie, obrazovanie (Humic Substances: Properties, Structure, and Formation), Ermakov, E.I., Ed., St. Petersburg: Izd. S.-Peterb. Univ., 2004.

    Google Scholar 

  9. 9

    Sanchez, A.R., Elguezabal, A.A., and Saenz, L.T., Carbon, 2001, vol. 39, p. 1367.

    Article  Google Scholar 

  10. 10

    Farberova, E.A., Tingaeva, E.A., and Maksimov, A.S., Russ. J. Appl. Chem., 2015, vol. 88, no. 4, p. P.579.

  11. 11

    Uvarov, N.F., V Mezhdunar. Farabievskie chteniya (V Int. Farabi Readings), 2018, p. 3.

    Google Scholar 

  12. 12

    Simenyuk, G.Y., Zakharov, Y.A., Puzynin, A.V., Vladimirov, A.A., Ivanova, N.V., Pugachev, V.M., Dodonov, V.G., Barnakov, C.N., Manina, T.S., and Ismagilov, Z.R., Mater. Manifact. Proc., 2016, vol. 31, no. 16, p. 739.

    CAS  Article  Google Scholar 

  13. 13

    Farberova, E.A., Tingaeva, E.A., Chuchalina, A.D., Kobeleva, A.R., and Maximov, A.S., Izv. Vyssh. Uchebn. Zaved., Ser. Khim. Khim. Tekhol., 2018, vol. 61, no. 3, p. 51. https://doi.org/10.6060/tcct.20186103.5612

    CAS  Article  Google Scholar 

  14. 14

    Simenyuk, G.Yu., Manina, T.S., Puzynin, A.V., Barnakov, Ch.N., Zakharov, Yu.A., Kozlov, A.P., and Ismagilov, Z.R., Khim. Interesakh Ustoich. Razvit., 2015, vol. 23, no. 2, p. 157. https://doi.org/10.15372/KhUR20150209

    CAS  Article  Google Scholar 

  15. 15

    Ermagambet, B.T., Kazankapova, M.K., Kanagatov, K.G., Nauryzbaeva, A.T., and Tanabaeva, A.K., Nauka, Tekhn. Obrazov., 2018, no. 9(50), p. 16.

  16. 16

    Yu, Z., Sun., S., and Huang, M., Int. J. Electrochem. Sci., 2016, vol. 11, p. 3643. https://doi.org/10.20964/2016.06.94

    CAS  Article  Google Scholar 

  17. 17

    Zakharov, Yu.A., Simenyuk, G.Yu., Pugachev, V.M., Dodonov, V.G., Pavelko, N.V., Manina, T.S., and Barnakov, Ch.N., Ross. Nanotekhnol., 2015, vol. 10, nos. 5–6, p. 51.

    Google Scholar 

  18. 18

    Barnakov, Ch.N., Samarov, A.V., Shikina, N.V., and Yakubik, D.G., Khim. Interesakh Ustoich. Razvit., 2015, vol. 23, no. 2, p. 219. https://doi.org/10.15372/KhUR20150217

    CAS  Article  Google Scholar 

  19. 19

    Simenyuk, G.Yu., Zakharov, Yu.A., Netrebenko, P.A., Trosnyanskaya, T.O., Pugachev, V.M., Dodonov, V.G., Larichev, T.A., Il’kevich, L.V., Nechaeva, T.S., and Ismagilov, Z.R., VII Mezhdunar. Rossiisko-Kazakhstansk. simp. Uglekhimiya i Ekologiya Kuzbassa (VII Int. Ross.–Kazakhst. Symp. Coal Chemistry and Ecology of Kuzbas), Kemerovo, 2018, p. 89.

  20. 20

    Vervikishko, D.E., Yanilkin, I.V., Dobele, G.V., Vol’perts, A., Atamanyuk, I.N., Sametov, A.A, and Shkol’nikov, E.I., Thermal Phys. High Temp., 2015, vol. 53, no. 5, p. 799. https://doi.org/10.7868/S0040364415050270

    Article  Google Scholar 

  21. 21

    Mukhin, V.M., Uchanov, P.V., and Sotnikova, N.I., Sorbts. Khromatogr. Prots., 2013, vol. 13, no. 1, p. 83.

    CAS  Google Scholar 

  22. 22

    Vyazova, N.G., Kryukova, V.N., and Latyshev, V.P., Solid Fuel Chem., 1999, no. 6, p. 47.

  23. 23

    Varshal, G.M., Koshcheeva, I.Ya., Velyukhanova, T.K., Chkhetiya, D.N., Tyutyunnik, O.A., and Grinevskaya, Zh.M., Geokhimiya, 1996, no. 11, p. 1107.

  24. 24

    Liu, J.F., Zhao, Z.S., and Jiang, G.B., Environ. Sci. Technol., 2008, no. 42, p. P.694.

  25. 25

    Yurishcheva, A.A., Cand. Sci. (Eng.) Dissertation, Moscow Russ. Chem. Technol. Univ., 2013.

  26. 26

    Fesenko, E.G., Semeistvo perovskita i segnetoelektrichestvo (Perovskite Family and Ferroelectricity), Moscow: Atomizdat, 1972.

  27. 27

    Venevtsev, Yu.N., Politova, E.D., and Ivanov, S.A., Segneto- i antisegnetoelektriki semeistva titanata bariya (Ferroelectric and Antiferroelectrics of the Barium Titanate Family), Moscow: Khimiya, 1985.

  28. 28

    Lines, M. and Glass, A., Principles and Applications of Ferroelectrics and Related Materials, Oxford (UK): Oxford Univ. Press, 1977.

    Google Scholar 

  29. 29

    Erin, Yu., Khim. Khimiki, 2009, no. 1, p. 16.

  30. 30

    Spiridonov, V.P. and Lopatkin, A.A., Matematicheskaya obrabotka eksperimental’nykh dannykh (Mathematical Treatment of Experimental Data), Moscow: Mosk. Gos. Univ., 1970.

Download references

Funding

This work was funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (scientific and technical program no. IRN BR05236359 and project no. IRN AP05130707).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to B. T. Yermagambet or B. K. Kasenov or M. K. Kazankapova or Zh. M. Kassenova or E. E. Kuanyshbekov or A. T. Nauryzbaeva.

Additional information

Translated by V. Makhlyarchuk

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yermagambet, B.T., Kasenov, B.K., Kazankapova, M.K. et al. Physicochemical and Electrophysical Properties of Carbon Materials Based on Humic Acids. Solid Fuel Chem. 55, 41–46 (2021). https://doi.org/10.3103/S036152192101002X

Download citation

Keywords:

  • activated adsorbent
  • humic acids
  • electrophysical properties
  • capacitance
  • electrical resistance
  • dielectric constant