Solid Fuel Chemistry

, Volume 52, Issue 2, pp 78–85 | Cite as

Regimes of the Combustion of Organic Coal–Water Fuels

  • T. R. Valiullin
  • K. Yu. Vershinina
  • S. Yu. Lyrshchikov
  • S. A. Shevyrev


The results of an analysis of the combustion behavior of the drops of organic coal–water fuels (OCWFs) prepared based on the flotation products (cakes) of the enrichment the coal of five grades (longflame, gas, coking, low-caking, and lean coals) and two petroleum products (petroleum residue and spent turbine oil) are presented. The experiments were performed under the conditions of the stationary fastening of an OCWF drop on the junction of a quick-response thermocouple in a flow of heated (from 500 to 1000°C) air. The following three combustion regimes were revealed for all of the test OCWF compositions: stepwise regime with slow heating (smoldering), intense gas generation regime with the boiling of liquid fuel components (boiling), and regime with a distinct tear-off zone of gas flow (torch). It was shown that the occurrence of the above combustion behaviors substantially depends on the characteristics of the OCWF components: the ash content and the yield of volatile substances of coal cakes and the boiling points and the ignition and combustion temperatures of the petroleum products used. Based on the results of the experiments, the ranges of air temperature changes characteristic of each of the three combustion regimes of fuel suspensions were established.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Delyagin, G.N., Sbornik statei (Collected Articles), Moscow: IGI, 1962, p. 11.Google Scholar
  2. 2.
    Delyagin, G.N. and Kantorovich, B.V., Szhiganie vysokoobvodnennogo topliva v vide vodougol’nykh suspenzii (Combustion of High-Water Fuel as Coal–Water Slurry), Moscow: Nauka, 1967, p. 5.Google Scholar
  3. 3.
    Delyagin, G.N., Szhiganie vysokoobvodnennogo topliva v vide vodougol’nykh suspenzii (Combustion of High-Water Fuel as Coal–Water Slurry), Moscow: Nauka, 1967, p. 45.Google Scholar
  4. 4.
    Red’kin, N.I., Gorlov, E.G., and Khodakov, G.S., Khim. Tverd. Topl. (Moscow), 2013, no. 5, p. 54.Google Scholar
  5. 5.
    Khodakov, G.S., Gorlov, E.G., and Golovin, G.S., Khim. Tverd. Topl. (Moscow), 2006, no. 4, p. 22.Google Scholar
  6. 6.
    Gorlov, E.G., Safiev, O.G., and Seregin, A.I., Khim. Tverd. Topl. (Moscow), 2008, no. 1, p. 54.Google Scholar
  7. 7.
    Zaidenvarg, V.E., Trubetskoi, K.N., Murko, V.I., and Nekhoroshii, I.Kh., Proizvodstvo i ispol’zovanie vodougol’nogo topliva (Production and Use of Coal–Water Fuel), Moscow: Izd. Akad. Gornykh Nauk, 2001.Google Scholar
  8. 8.
    Chen, R., Wilson, M., Leong, Y.K., Bryant, P., Yang, H., and Zhang, D.K., Fuel, 2011, vol. 90, p. 1689.CrossRefGoogle Scholar
  9. 9.
    He, Q., Xie, D., Xu, R., Wang, T., and Hu, B., Fuel, 2015, vol. 159, p. 40.CrossRefGoogle Scholar
  10. 10.
    Chen, X., Zhao, L., Zhang, X., and Qian, C., Energy Convers. Manage., 2012, vol. 62, p. 70.CrossRefGoogle Scholar
  11. 11.
    Wang, H., Jiang, X., Zhang, M., Ma, Y., Liu, H., and Wu, S., Chem. Eng. Process. Process Intensification, 2010, vol. 49, no. 10, p. 1017.CrossRefGoogle Scholar
  12. 12.
    Zhang, J., Zhao, H., Wang, C., Li, W., Xu, J., and Liu, H., Fuel, 2016, vol. 177, p. 19.CrossRefGoogle Scholar
  13. 13.
    Zhao, H., Hou, Y.-B., Liu, H.-F., Tian, X.-S., Xu, J.-L., Li, W.-F., Liu, Y., Wu, F.-Y., Zhang, J., and Lin, K.-F., J. Non-Newton. Fluid. Mech., 2014, vol. 211, p. 1.CrossRefGoogle Scholar
  14. 14.
    Yi, F., Gopan, A., and Axelbaum, R.L., J. Fuel Chem. Technol., 2014, vol. 42, p. 1167.CrossRefGoogle Scholar
  15. 15.
    Zhao, X., Zhu, W., Huang, J., Li, M., and Gong, M., J. Energy Inst., 2015, vol. 88, p. 105.CrossRefGoogle Scholar
  16. 16.
    Jianzhong, L., Ruikun, W., Jianfei, X., Junhu, Z., and Kefa, C., Appl. Energy, 2014, vol. 115, p. 309.CrossRefGoogle Scholar
  17. 17.
    Ovchinnikov, Yu.V. and Lutsenko, S.V., Energosistemy, Elektrostantsii Agregaty, 2006, no. 10, p. 147.Google Scholar
  18. 18.
    Delyagin, G.N., Opyt szhiganiya vodougol’nykh suspenzii v topkakh parovykh kotlov (Combustion of Coal–Water Slurries in Boiler Furnaces), Moscow: Rotaprint, 1966, p. 88.Google Scholar
  19. 19.
    Osintsev, K.V., Vestn. YuUr. Gos. Univ. Ser. Energetika, 2014, no. 1, p. 5.Google Scholar
  20. 20.
    Murko, V.I., Dzhundubaev, A.K., Baranova, M.P., Biibosunov, A.I., and Kulagin, V.A., Gidrotransportnye toplivno-energeticheskie kompleksy (Hydrotransportation Fuel–Energy Complexes), Krasnoyarsk: Sib. Feder. Univ., 2015.Google Scholar
  21. 21.
    Kijo-Kleczkowska, A., Fuel, 2011, vol. 90, p. 865.CrossRefGoogle Scholar
  22. 22.
    Lyrshchikov, S.Yu., Strizhak, P.A., and Shevyrev, S.A., Koks Khim., 2016, no. 5, p. 11.Google Scholar
  23. 23.
    Gorlov, E.G., Khim. Tverd. Topl. (Moscow), 2004, no. 6, p. 50.Google Scholar
  24. 24.
    Khodakov, G.S., Gorlov, E.G., and Golovin, G.S., Khim. Tverd. Topl. (Moscow), 2005, no. 6, p. 15.Google Scholar
  25. 25.
    Khodakov, G.S., Teploenergetika, 2007, no. 1, p. 35.Google Scholar
  26. 26.
    Lishtvan, I.I., Falyushin, P.L., Smolyachkova, E.A., and Kovrik, S.I., Khim. Tverd. Topl. (Moscow), 2009, no. 1, p. 3.Google Scholar
  27. 27.
    Valiullin, T.R., Strizhak, P.A., and Shevyrev, S.A., Thermal Sci., 2015, vol. 2015, p. 1.Google Scholar
  28. 28.
    GOST (State Standard) 2177-99. Petroleum Products: Methods for the Determination of Fractional Composition, Minsk: Mezhgos. Sovet Standartizatsii, Metrologii Sertifikatsii, 2001.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • T. R. Valiullin
    • 1
  • K. Yu. Vershinina
    • 1
  • S. Yu. Lyrshchikov
    • 1
  • S. A. Shevyrev
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations