Advertisement

Solid Fuel Chemistry

, Volume 52, Issue 2, pp 91–103 | Cite as

Hydrothermal Carbonization of Biomass: A Review

  • A. Yu. Krylova
  • V. M. Zaitchenko
Article
  • 54 Downloads

Abstract

The review surveys the structure and properties of plant biomass and the processes of its thermal conversion into biocoal (pyrolysis, torrefaction, and hydrothermal carbonization). Attention is focused on the hydrothermal carbonization: the mechanism of reaction, the conversion of the individual components of biomass and the material as a whole, the properties of the resulting biocoal, and current trends in the application of this process are described (the use as fuel and in the production of adsorbents, catalysts, etc.).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kosivtsov, Yu.Yu. and Sul’man, E.M., Tekhnologii piroliza organicheskikh materialov (Technologies for the Pyrolysis of Organic Materials), Tver: TGTU, 2010.Google Scholar
  2. 2.
    Rustamov, N.A., Zaitsev, S.I., and Chernova, N.I., Energiya, 2005, no. 6, p. 20.Google Scholar
  3. 3.
    Smirnov, P.M. and Muravin, E.L., Agrokhimiya (Agrochemistry), Moscow: Kolos, 1977, p. 15.Google Scholar
  4. 4.
    Smirnov, P.M. and Muravin, E.L., Agrokhimiya (Agrochemistry), Moscow: Kolos, 1977, p. 13.Google Scholar
  5. 5.
    Terent’eva, E.P., Udovenko, N.K., and Pavlova, E.A., Khimiya drevesiny, tsellyulozy i sinteticheskikh polimerov: uchebnoe posobie (Chemistry of Wood, Cellulose, and Synthetic Polymers: A Tutorial), St. Petersburg: SPbGTURP, 2015, part 2.Google Scholar
  6. 6.
    Biocoal. http://www.biouhli.com/ru/tekhnologija/process-nts/Google Scholar
  7. 7.
    Pal’chenok, G.I., Khutskaya, N.G., and Leichenok, N.S., Equilibrium Composition of the Thermochemical Conversion Products of Plant Biomass and Carbon-Containing Wastes. http://pandia.ru/text/79/565/55070.phpGoogle Scholar
  8. 8.
    Method of Coal Production from Biowaste. http://www.ecotoc.ru/traditional/ugol/d742/Google Scholar
  9. 9.
    Bergius, F., Die Anwendung hoher Drucke bei chemischen Vorgangen und eine Nachbildung des Entstehungsprozesses der Steinkohle, Knapp W., Ed., 1913, p. 41.Google Scholar
  10. 10.
    Leibniz, E.J., Prakt. Chem., 1958, vol. 4, no. 6, p. 18.CrossRefGoogle Scholar
  11. 11.
    Lu, X., Yamauchi, K., and Phaiboonsilpa, N., J. Wood Sci., 2009, vol. 55, p. 367.CrossRefGoogle Scholar
  12. 12.
    Funke, A. and Ziegler, F., Biofuel. Bioprod. Biorefining, 2010, vol. 4, p. 4160.CrossRefGoogle Scholar
  13. 13.
    Brown, R.C., Biorenewable Resources: Engineering New Products from Agriculture, Ames, Iowa: Iowa State Press, 2003, p. 30.Google Scholar
  14. 14.
    Sevilla, M. and Fuertes, A.B., Carbon, 2009, vol. 47, p. 2281.CrossRefGoogle Scholar
  15. 15.
    Reza, M.T., Yan, W., Uddin, M.H., Lynam, J.G., Hoekman, S.K., Charles, J., Coronella, C.J., and Vasque, V.R., Bioresour. Technol., 2013, vol. 139, p. 161.CrossRefGoogle Scholar
  16. 16.
    Zhang, B., Huang, H.J., and Ramaswamy, S., Appl. Biochem. Biotechnol., 2008, vol. 147, nos. 1–3, p. 119.CrossRefGoogle Scholar
  17. 17.
    Hatate, Y., Ind. Eng. Chem. Res., 2009, vol. 39, p. 3688.Google Scholar
  18. 18.
    Yu, Y., Lou, X., and Wu, H., Energy Fuels, 2008, vol. 22, p. 46.CrossRefGoogle Scholar
  19. 19.
    Funke, A. and Ziegler, F., Biofuel. Bioprod. Biorefining, 2010, vol. 4, no. 2, p. 160.CrossRefGoogle Scholar
  20. 20.
    Loppinet-Serani, A., Aymonier, C., and Cansell, F., J. Chem. Technol. Biotechnol., 2010, vol. 85, p. 583.CrossRefGoogle Scholar
  21. 21.
    Sun, X. and Li, Y., Angew. Chem., Int. Ed. Engl., 2004, vol. 43, no. 5, p. 597.CrossRefGoogle Scholar
  22. 22.
    Reza, M.T., Andert, J., Wirth, B., Busch, D., Pielert, J., Lynam, J.G., and Mumme, J., Appl. Bioenergy, 2014, vol. 1, p. 11.CrossRefGoogle Scholar
  23. 23.
    Falco, C., Baccile, N., and Titirici, M.M., Green Chem., 2011, vol. 13, no. 11, p. 3273.CrossRefGoogle Scholar
  24. 24.
    Ballesteros, I., Oliva, J.M., Negro, M.J., Manzanares, P., and Ballesteros, M., Proc. Biochem. Soc., 2002, vol. 38, p. 187.CrossRefGoogle Scholar
  25. 25.
    Karao, S., Bhaskar, T., Muto, A., Sakata, Y., and Uddin, M.A., Energy Fuels, 2004, vol. 18, p. 234.CrossRefGoogle Scholar
  26. 26.
    Brownell, H.H., Yu, E.K.C., and Saddler, J.N., Biotechnol. Bioeng., 1986, vol. 28, p. 792.CrossRefGoogle Scholar
  27. 27.
    Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., and Ladisch, M., Bioresour. Technol., 2005, vol. 96, p. 673.CrossRefGoogle Scholar
  28. 28.
    Cullis, I.F., Saddler, J.N., and Mansfield, S.D., Biotechnol. Bioeng., 2004, vol. 85, p. 413.CrossRefGoogle Scholar
  29. 29.
    Rodriguez, A., Moral, A., Sanchez, R., Requejo, A., and Jimenez, L., Bioresour. Technol., 2009, vol. 100, p. 4863.CrossRefGoogle Scholar
  30. 30.
    Yan, W., Hastings, J.T., Acharjee, T.C., Coronella, C.J., and Vasquez, V.R., Energy Fuels, 2010, vol. 24, no. 9, p. 4738.CrossRefGoogle Scholar
  31. 31.
    Funke, A. and Ziegler, F., Bioresour. Technol., 2011, vol. 102, no. 16, p. 7595.CrossRefGoogle Scholar
  32. 32.
    Beneman, J.R., EPRI Report ER-746-SR, Palo Alto: Electric Power Research Institute, 1978, p. 88.Google Scholar
  33. 33.
    Methane Generation from Human, Animal, and Agricultural Wastes, Washington, D.C.: Natl. Acad. Sci., 1977, p. 131.Google Scholar
  34. 34.
    Korber, H. and Zimmermann, H., Angewandte Physik Consulting GmbH, Stuttgart, Germany, 2010. http://www.m2p.erdi.or.th/index.php?option=com_docman &task=cat_view&gid=47&Itemid=48&lang=enGoogle Scholar
  35. 35.
    Faaij, A., Mitigation and Adaptation Strategies for Global Change, 2006, vol. 11, p. 343.CrossRefGoogle Scholar
  36. 36.
    Al-Mansour, F. and Zuwala, J., Biomass Bioenergy, 2010, vol. 34, p. 620.CrossRefGoogle Scholar
  37. 37.
    Nelson, T.O., Green, D.A., Box, P., Gupta, R.P., Henningsen, G., and Turk, B.S., Carbon Capture and Sequestration Systems Analysis Guidelines. Final Report. US Department of Energy (DOE)–Office of Fossil Energy and National Energy Technology Laboratory (NETL), 2007. www.netl.doe.gov/File%20Library/Research/Coal/Carbon-Dioxide-Capture-from-Flue-Gas-Using-Dry-Regenerable-S.pdfGoogle Scholar
  38. 38.
    Spliethoff, H., Verbrennung fester Brennstoffe zur Stromund Warmeerzeugung: Verfahren und Stand der Technik, Dusseldorf: VDI Verlag, 2000, p. 3.Google Scholar
  39. 39.
    Yan, W., Acharjee, T.C., Coronella, C.J., and Vasquez, V.R., Environ. Prog. Sustain. Energy, 2009, vol. 28, no. 3, p. 435.CrossRefGoogle Scholar
  40. 40.
    Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., and Titirici, M.M., Adv. Mater., 2010, vol. 22, no. 7, p. 813.CrossRefGoogle Scholar
  41. 41.
    Falco, C., Perez Caballero, F., Babonneau, F., Gervais, C., Laurent, G., and Titirici, M.M., Langmuir, 2011, vol. 27, no. 23, p. 14460.CrossRefGoogle Scholar
  42. 42.
    Sagehashi, M., Miyasaka, N., Shishido, H., and Sakoda, A., Bioresour. Technol., 2006, vol. 97, p. 1272.CrossRefGoogle Scholar
  43. 43.
    Zhang, F.Q., Meng, Y., Gu, D., Yan, Y., Yu, C.Z., Tu, B., and Zhao, D.Y., J. Am. Chem. Soc., 2005, vol. 127, p. 13508.CrossRefGoogle Scholar
  44. 44.
    Sevilla, M., Fuertes, A.B., and Mokaya, R., Energy Environ. Sci., 2011, vol. 4, no. 4, p. 1400.CrossRefGoogle Scholar
  45. 45.
    Sevilla, M. and Fuertes, A.B., Energy Environ. Sci., 2011, vol. 4, no. 5, p. 1765.CrossRefGoogle Scholar
  46. 46.
    Zhao, L., Bacsik, Z., Hedin, N., Wei, W., Sun, Y., Antonietti, M., and Titirici, M.M., Chem. Sus. Chem., 2010, vol. 3, no. 7, p. 840.CrossRefGoogle Scholar
  47. 47.
    Demir-Cakan, R., Baccile, N., Antonietti, M., and Titirici, M.M., Chem. Mater., 2009, vol. 21, no. 3, p. 484.CrossRefGoogle Scholar
  48. 48.
    Chen, Z., Ma, L., and Li, S., Appl. Surf. Sci., 2011, vol. 257, no. 20, p. 8686.CrossRefGoogle Scholar
  49. 49.
    Pietrzak, R., Wachowska, H., and Nowicki, P., Energy Fuels, 2006, vol. 20, p. 1275.CrossRefGoogle Scholar
  50. 50.
    Matter, P.H., Zhang, L., and Ozkan, U.S., J. Catal., 2006, vol. 239, no. 1, p. 83.CrossRefGoogle Scholar
  51. 51.
    Li, L., Liu, E., Yang, Y., Shen, H., Huang, Z., and Xiang, X., Mater. Lett., 2010, vol. 64, p. 2115.CrossRefGoogle Scholar
  52. 52.
    Hu, Y.S., Demir-Cakan, R., Titirici, M.M., Muller, J.O., Schlogl, R., Antonietti, M., and Maier, J., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 9, p. 1645.CrossRefGoogle Scholar
  53. 53.
    Popovic, J., Demir-Cakan, R., and Tornow, J., Small, 2011, vol. 8, p. 1127.CrossRefGoogle Scholar
  54. 54.
    Yu, S.H., Cui, X.J., and Li, L.L., Adv. Mater., 2004, vol. 16, p. 1636.CrossRefGoogle Scholar
  55. 55.
    Wei, L., Sevilla, M., and Fuertes, A.B., Adv. Energy Mater., 2011, p. 356.Google Scholar
  56. 56.
    Hang, Q., Li, H., Chen, L., and Huang, X., Carbon, 2001, vol. 39, no. 14, p. 2211.CrossRefGoogle Scholar
  57. 57.
    Tang, K., White, R.J., Mu, X., Titirici, M.M., van Aken, P.A., and Maier, J., Chem. Sus. Chem., 2012, vol. 5, no. 2, p. 400.CrossRefGoogle Scholar
  58. 58.
    Yang, R., Qiu, X., and Zhang, H., Carbon, 2005, vol. 43, no. 1, p. 116.CrossRefGoogle Scholar
  59. 59.
    Zhao, L., Chen, X., and Wang, X., Adv. Mater., 2010, vol. 22, no. 30, p. 3317.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.OOO Al’ternativnye TekhnologiiMoscowRussia
  2. 2.Joint Institute for High TemperaturesRussian Academy of Sciences (JIHT RAS)MoscowRussia

Personalised recommendations