Solid Fuel Chemistry

, Volume 52, Issue 2, pp 121–127 | Cite as

Process Simulation of the Co-Gasification of Wood and Polymeric Materials in a Fixed Bed

  • I. G. Donskoi


The problem of waste processing remains of considerable current interest. Energy processing can become a method for its solution. For this purpose, the addition of higher grade fuel is frequently required in order to stabilize the process of thermal conversion. In this work, the effect of control parameters on the efficiency of the co-gasification of biomass (wood) and waste polymers in a dense layer was investigated. For this purpose, a mathematical model, which included blocks for describing drying, pyrolysis, and gasification processes for each particular component of a fuel mixture, was developed. The results of the calculation were compared with published data.


polymeric wastes wood gasification mathematical simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Castaldi, M., van Deventer, J., Lavoie, J.M., Legrand, J., Nzihou, A., Pontikes, Y., Py, X., Vandecasteele, C., and Vasuedevan, P.T., Waste Biomass Valorization, 2017, vol. 8, no. 6, p. 1875.CrossRefGoogle Scholar
  2. 2.
    Arena, U., Waste Management, 2012, vol. 32, p. 625.CrossRefGoogle Scholar
  3. 3.
    McIlveen-Wright, D.R., Rinto, F., Armesto, L., Caballero, M.A., Aznar, M.P., Cabanillas, A., Huang, Y., Franco, C., Gulyutlu, I., and McMullan, J.T., Fuel Proc. Tech., 2006, vol. 87, p. 793.CrossRefGoogle Scholar
  4. 4.
    Mastellone, M.L. and Arena, U., Polym. Degrad. Stability, 2004, vol. 85, p. 1051.CrossRefGoogle Scholar
  5. 5.
    Lera, S.M., Thesis Doctoral (PhD), Zaragoza Univ., 2015.Google Scholar
  6. 6.
    Tanigaki, N., Manako, K., and Osada, M., Waste Management, 2012, vol. 32, p. 667.CrossRefGoogle Scholar
  7. 7.
    Arena, U. and Di Gregorio, F., Fuel, 2014, vol. 117, p. 528.CrossRefGoogle Scholar
  8. 8.
    Arena, U. and Di Gregorio, F., Energy, 2014, vol. 68, p. 735.CrossRefGoogle Scholar
  9. 9.
    Chen, T., Wu, J., Zhu, M., Sun, L., and Zhang, D., Fuel, 2014. vil. 137. p. 77.CrossRefGoogle Scholar
  10. 10.
    Couto, N.D., Silva, V.B., and Rouboa, A., J. Cleaner Prod., 2016, vol. 139, p. 622.CrossRefGoogle Scholar
  11. 11.
    Materazzi, M., Lettieri, P., Mazzei, L., Taylor, R., and Chapman, C., Fuel, 2015, vol. 150, p. 473.CrossRefGoogle Scholar
  12. 12.
    Subramanyam, V. and Gorodetsky, A., Integrated Gasification Combined Cycle (IGCC) Technologies, Cambridge: Woodhead, 2017, p. 181.CrossRefGoogle Scholar
  13. 13.
    Cho, M.-H., Mun, T.-Y., and Kim, J.-S., Energy, 2013, vol. 58, p. 688.CrossRefGoogle Scholar
  14. 14.
    Cho, M.-H., Choi, Y.-K., and Kim, J.-S., Energy, 2015, vol. 87, p. 586.CrossRefGoogle Scholar
  15. 15.
    Kungkajit, C., Prateepchaikul, G., and Kaosol, T., Energy Procedia, 2015, vol. 79, p. 528.CrossRefGoogle Scholar
  16. 16.
    Ruoppolo, G., Ammendola, P., and Chirone, R., Waste Management, 2012, vol. 32, p. 724.CrossRefGoogle Scholar
  17. 17.
    Onwudili, J.A. and Williams, P.T., Process Safety Environ. Protection, 2016, vol. 102, p. 140.CrossRefGoogle Scholar
  18. 18.
    Mastellone, M.L., Fuel, 2010, vol. 89, p. 2991.CrossRefGoogle Scholar
  19. 19.
    Mastelone, M.L., Zaccariello, L., Santoro, D., and Arena, U., Waste Management, 2012, vol. 32, p. 733.CrossRefGoogle Scholar
  20. 20.
    Narobe, M., Golob, J., Klinar, D., Francetic, V., and Likozar, B., Biores. Tech., 2014, vol. 162, p. 21.CrossRefGoogle Scholar
  21. 21.
    Wilk, V. and Hofbauer, H., Fuel, 2013, vol. 107, p. 787.CrossRefGoogle Scholar
  22. 22.
    Pinto, F., Franco, C., Andre, R.N., Miranda, M., Gulyurtlu, I., and Cabrita, I., Fuel, 2002, vol. 81, p. 291.CrossRefGoogle Scholar
  23. 23.
    Robinson, T., Bronson, B., Gogolek, P., and Mehrani, P., Fuel, 2016, vol. 178, p. 263.CrossRefGoogle Scholar
  24. 24.
    Donskoi, I.G., Keiko, A.V., Kozlov, A.N., Svishchev, D.A., and Shamanskii, V.A., Teploenergetika, 2013, no. 12, p. 56.Google Scholar
  25. 25.
    Donskoy, I.G., MATEC Web of Conference, 2016. vol. 72, no. 01026.CrossRefGoogle Scholar
  26. 26.
    Donskoy, I.G., Shamansky, V.A., Kozlov, A.N., and Svishchev, D.A., Combust. Theory Modeling, 2017, vol. 21, no. 3, p. 529.CrossRefGoogle Scholar
  27. 27.
    Garcia-Bacaioca, P., Mastral, J.F., Ceamanos, J., Berrueco, C., and Serrano, S., Biores. Tech., 2008, vol. 99, p. 5485.CrossRefGoogle Scholar
  28. 28.
    Kozlov, A.N., Svishchev, D.A., Khudyakova, G.I., and Ryzhkov, A.F., Khim. Tverd. Topl. (Moscow), 2017, no. 4, p. 12.Google Scholar
  29. 29.
    Bockhorn, H., Hornung, A., Hornung, U., and Schawaller, D., J. Anal. App. Pyrolysis, 1999, vol. 48, p. 93.CrossRefGoogle Scholar
  30. 30.
    Ranzi, E., Faravelli, T., and Manenti, F., Adv. Chem. Eng., 2016, vol. 49, p. 1.CrossRefGoogle Scholar
  31. 31.
    Salganskaya M.V., Glazov S.V., Salganskii E.A., Zholudev A.F., Russ. J. Phys. Chem. B, 2010, vol. 29, no. 11, p. 55.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Melent’ev Institute of Power Engineering Systems, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations