Limiting expectation time distribution for a critical load in a system with relative priority

Abstract

A single-channel system with relative priority and a hyperexponential input stream is considered. The limiting distribution of the virtual expectation time for lowest-priority requests under conditions of a critical load is found.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    A. V. Ushakov, “On Virtual Waiting Time in a System with Relative Priority and Hyperexponential Incoming Flow,” Inform. Primen. 6(1), 2–6 (2012).

    Google Scholar 

  2. 2.

    V. G. Ushakov, “A Queue System with Erlang Incoming Flow and Relative Priority,” Teor. Veroyatn. Primen. 22, 860–866 (1977).

    Google Scholar 

  3. 3.

    V. F. Matveev and V. G. Ushakov, Queue Systems (Mosk. Gos. Univ., Moscow, 1984) [in Russian].

    Google Scholar 

  4. 4.

    V. G. Ushakov, “Analytic Methods for the Analysis of the GI|G r|1|∞ Queue System with Relative Priority,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 4, 57–69 (1993).

  5. 5.

    V. G. Ushakov, “On the Queue Length in a Unilinear Queue System with Alternation of Priorities,” Vestn. Mosk. Univ., Ser. 15: Vychisl. Mat. Kibern., No. 2, 29–36 (1994).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Ushakov.

Additional information

Original Russian Text © A.V. Ushakov, V.G. Ushakov, 2013, published in Vestnik Moskovskogo Universiteta. Vychislitel’naya Matematika i Kibernetika, 2012, No. 4, pp. 11–16.

About this article

Cite this article

Ushakov, A.V., Ushakov, V.G. Limiting expectation time distribution for a critical load in a system with relative priority. MoscowUniv.Comput.Math.Cybern. 37, 42–48 (2013). https://doi.org/10.3103/S0278641912040073

Download citation

Keywords

  • Relative priority
  • virtual expectation time
  • critical load