Optimal control in a mathematical model for leukemia therapy with phase constraints

  • A. S. Bratus
  • A. S. Goncharov
  • I. T. Todorov


We examine the optimal control problem that arises in the mathematical modeling of leukemia therapy, to solve which the Pontryagin maximum principle and the penalty function method are employed. It is assumed that the drug is capable of killing not only diseased cells, but healthy cells as well. The character of the drug’s interaction with cells is described by appropriate therapy functions.


Cancer leukemia optimal control therapy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. K. Afenya and C. P. Calderon, “A Brief Look at Normal Cells Decline and Inhibition in Acute Leukemia,” J. Can. Det. Prev. 20(3), 171–191 (1996).Google Scholar
  2. 2.
    C. L. Frenzen and J. D. Murray, “A Cell Kinetics Justification for Gompertz Equation,” SIAM J. Appl. Math. 46, 614–624 (1986).MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    M. Gyllenberg and G. F. Webb, “Quiescence As An Explanation of Gompertzian Tumor Growth,” Growth Dev. Aging 53(1), 25–33 (1989).Google Scholar
  4. 4.
    W. S. Kendal, “Gompertzian Growth As a Consequence of Tumor Heterogeneity,” Math. Biosci. 73, 103–107 (1985).MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    A. K. Laird, “Dynamics of Tumor Growth: Comparison of Growth and Cell Population Dynamics,” Math. Biosci. 185, 153–167 (2003).MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, and E. F. Mishchenko, The Mathematical Theory of Optimal Processes (Nauka, Moscow, 1983; Gordon and Breach, New York, 1986).MATHGoogle Scholar
  7. 7.
    F. P. Vasil’ev, Optimization Methods (MTsNMO, Moscow, 2011) [in Russian].Google Scholar
  8. 8.
    N. N. Moiseev, Elements of the Theory of Optimal Systems (Nauka, Moscow, 1975) [in Russian].MATHGoogle Scholar
  9. 9.
    A. S. Bratus, E. Fimmel, F. Nurnberg, and Y. Todorov, “On Strategies on a Mathematical Model for Leukemia Therapy,” Nonlinear Analysis: Real World Applications 13, 1044–1059 (2011).MathSciNetCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • A. S. Bratus
    • 1
  • A. S. Goncharov
    • 1
  • I. T. Todorov
    • 2
  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia
  2. 2.Mannheim University of Applied SciencesMannheimGermany

Personalised recommendations