Advertisement

Examples of the absence of a traveling wave for the generalized Korteweg-de Vries-Burgers equation

  • A. V. KazeykinaEmail author
Article
  • 42 Downloads

Abstract

An example of convex function f(u) for which the generalized Korteweg-de Vries-Burgers equation u t + (f(u)) x + au xxx bu xx = 0 has no solutions in the form of a traveling wave with specified limits at infinity is constructed. This example demonstrates the difficulties in analyzing asymptotic behavior of the Cauchy problem for the Korteweg-de Vries-Burgers equation that is not inherent in the type of equation for the conservation law, the Burgers-type equation, and its finite difference analog.

Keywords

Korteweg-de Vries-Burgers equation traveling wave 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. M. Polterovich and G. M. Khenkin, “Evolution Model of the Interaction Between Technology Formation and Borrowing Processes,” Ekon. Mat. Met. 24, 1071–1083 (1988).MathSciNetGoogle Scholar
  2. 2.
    A. M. Il’in and O. A. Oleinik, “Asymptotic Behavior of Solutions of the Cauchy Problem for Some Quasi-Linear Equations at Large Time Values,” Mat. Sb. 51(2), 191–216 (1960).MathSciNetGoogle Scholar
  3. 3.
    S. N. Kruzhkov and N. S. Petrosyan, “Asymptotic Behavior of Solutions of the Cauchy Problem for First-Order Nonlinear Equations,” Usp. Mat. Nauk 42 5(257), 3–40 (1987).MathSciNetGoogle Scholar
  4. 4.
    G. M. Henkin and A. A. Shananin, “Asymptotic Behavior of Solutions of the Cauchy Problem for Burgers Type Equations,” J. Math. Pures Appl. 83, 1457–1500 (2004).MathSciNetzbMATHGoogle Scholar
  5. 5.
    G. M. Henkin, A. A. Shananin, and A. E. Tumanov, “Estimates for Solution of Burgers Type Equations and Some Applications,” J. Math. Pures Appl. 83, 717–752 (2005).MathSciNetGoogle Scholar
  6. 6.
    G. M. Henkin, “Asymptotic Structure for Solutions of the Cauchy Problem for Burgers Type Equations,” JEPTA 1, 239–291 (2007).MathSciNetzbMATHGoogle Scholar
  7. 7.
    A. V. Gasnikov, “Asymptotic of the Time Behavior of the Solution of the Initial Cauchy Problem for the Conservation Law with Nonlinear Divergent Viscosity,” Izv. Akad. Nauk, Ser. Matem. 73(6), 39–76 (2009).MathSciNetGoogle Scholar
  8. 8.
    R. Duan and H. Zhao, “Global Stability of Strong Rarefaction Waves for the Generalized KdV-Burgers Equation,” Nonlinear Anal. 66, 1100–1117 (2007).MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    P. I. Naumkin and I. A. Shishmarev, “Step Disintegration Problem for the Korteweg-de Vries-Burgers Equation,” Funkts. Analiz Pril. 25(1), 21–32 (1991).MathSciNetGoogle Scholar
  10. 10.
    J. L. Bona and M. E. Schonbek, “Travelling-Wave Solutions to the Korteweg-de Vries-Burgers Equation,” Proc. R. Soc. Edinburgh 101(A), 207–226 (1985).MathSciNetzbMATHGoogle Scholar
  11. 11.
    P. I. Naumkin and I. A. Shishmarev, “On Step Disintegration for the Korteweg-de Vries-Burgers Equation,” Funkts. Analiz Pril. 26(2), 88–93 (1991).MathSciNetGoogle Scholar
  12. 12.
    A. V. Kazeykina, “Stability of a Traveling-Wave Solution to the Cauchy Problem for the Korteweg-de Vries-Burgers Equation,” Zh. Vychisl. Mat. Mat. Fiz. 50, 725–745 (2010) [Comp. Math. Math. Phys. 50, 690–710 (2010)].MathSciNetGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  1. 1.Faculty of Computational Mathematics and CyberneticsMoscow State UniversityMoscowRussia

Personalised recommendations