Skip to main content
Log in

Collaborative Decision Support Systems Based on Neuro-Symbolic Artificial Intelligence: Problems and Generalized Conceptual Model

  • Published:
Scientific and Technical Information Processing Aims and scope

Abstract

The development of artificial intelligence technologies and the growing complexity of decision-making when managing complex dynamic systems necessitate the joint work of humans and artificial intelligence, including as part of teams of heterogeneous participants (for example, experts and agents operating with artificial intelligence). The paper discusses the requirements for collaborative human-machine decision support systems and the problems that can arise during their creation. The methods of neuro-symbolic artificial intelligence can help resolve some of these problems. An analysis of modern results in the field of ontology-oriented neuro-symbolic artificial intelligence is carried out, primarily intended to explain neural network models using ontologies and symbolic knowledge to improve the efficiency of neural network models. A conceptual model of a collaborative human-machine decision support system based on ontology-oriented neuro-symbolic intelligence is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. Averkin, A.N., Explainable artificial intelligence: Results and perspectives, Integrirovannye modeli i myagkie vychisleniya v iskusstvennom intellekte (IMMV-2021). Sbornik nauchnykh trudov X-i Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii (Integrated Models and Soft Computing in Artificial Intelligence (IMMV-2021): Proc. 10th Int. Sci.-Tech. Conf.), Smolensk: Universum, 2021, pp. 153–174.

  2. Demidovskii, A.V. and Babkin, E.A., Integrated neurosymbolic decision support systems: Problems and opportunities, Business Inf., 2021, vol. 15, no. 3, pp. 7–23. https://doi.org/10.17323/2587-814X.2021.3.7.23

    Article  Google Scholar 

  3. Appelbaum, S.H., Socio-technical systems theory: An intervention strategy for organizational development, Manage. Decision, 1997, vol. 35, no. 6, pp. 452–463. https://doi.org/10.1108/00251749710173823

    Article  Google Scholar 

  4. Rafner, J., Dellermann, D., Hjorth, A., Verasztó, D., Kampf, C., Mackay, W., and Sherson, J., Deskilling, upskilling, and reskilling: A case for hybrid intelligence, Morals Mach., 2021, vol. 1, no. 2, pp. 24–39. https://doi.org/10.5771/2747-5174-2021-2-24

    Article  Google Scholar 

  5. Johnson, M., Bradshaw, J., Feltovich, P., Jonker, C., Van Riemsdijk, M., and Sierhuis, M., Coactive design: Designing support for interdependence in joint activity, J. Hum.-Robot Interaction, 2014, vol. 3, no. 1, p. 43. https://doi.org/10.5898/jhri.3.1.johnson

    Article  Google Scholar 

  6. Van den Bosch, K. and Bronkhorst, A., Human–AI cooperation to benefit military decision making, STO-MP-IST-160, Soesterberg: 2018.

  7. Xiong, W., Fan, H., Ma, L., and Wang, C., Challenges of human–machine collaboration in risky decision-making, Front. Eng. Manage., 2022, vol. 9, no. 1, pp. 89–103. https://doi.org/10.1007/s42524-021-0182-0

    Article  Google Scholar 

  8. Utkin, L.V., Meldo, A.A., Kovalev, M.S., and Kasimov, E.M., A review of methods for explaining and interpreting decisions of intelligent cancer diagnosis systems, Sci. Tech. Inf. Process., 2021, vol. 48, no. 5, pp. 398–405. https://doi.org/10.3103/S0147688221050129

    Article  Google Scholar 

  9. Cummings, M.L., Automation and accountability in decision support system interface design, J. Technol. Stud., 2006, vol. 32, no. 1, pp. 23–31. https://doi.org/10.21061/jots.v32i1.a.4

    Article  Google Scholar 

  10. Kroon, M.B.R., Van Kreveld, D., and Rabbie, J.M., Group versus individual decision making, Small Group Res., 1992, vol. 23, no. 4, pp. 427–458. https://doi.org/10.1177/1046496492234001

    Article  Google Scholar 

  11. Mastering Data-Intensive Collaboration and Decision Making: Research and Practical Application in the Dicode Project, Karacapilidis, N., Ed., Studies in Big Data, vol. 5, Cham: Springer, 2014. https://doi.org/10.1007/978-3-319-02612-1

  12. Ribeiro de Sousa, M. and Leite, J., Aligning artificial neural networks and ontologies towards explainable AI, Proc. AAAI Conf. Artif. Intell., 2021, vol. 35, no. 6, pp. 4932–4940.

  13. Confalonieri, R., Weyde, T., Besold, T., and Moscoso Del Prado Martín, F., Using ontologies to enhance human understandability of global post-hoc explanations of black-box models, Artif. Intell., 2021, vol. 296, p. 103471. https://doi.org/10.1016/j.artint.2021.103471

    Article  MathSciNet  Google Scholar 

  14. Gupta, U. and Chaudhury, S., Deep transfer learning with ontology for image classification, 2015 Fifth Natl. Conf. on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG), Patna, India, 2015, IEEE, 2015, pp. 1–4. https://doi.org/10.1109/ncvpripg.2015.7490037

  15. Sun, Yi. and Ghaffarzadegan, S., An ontology-aware framework for audio event classification, 2020 IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, 2020, IEEE, 2020, pp. 321–325. https://doi.org/10.1109/icassp40776.2020.9053389

  16. Phan, N., Dou, D., Wang, H., Kil, D., and Piniewski, B., Ontology-based deep learning for human behavior prediction with explanations in health social networks, Inf. Sci., 2017, vol. 384, pp. 298–313. https://doi.org/10.1016/j.ins.2016.08.038

    Article  Google Scholar 

  17. Kuang, Z., Yu, J., Li, Z., Zhang, B., and Fan, J., Integrating multi-level deep learning and concept ontology for large-scale visual recognition, Pattern Recognit., 2018, vol. 78, pp. 198–214. https://doi.org/10.1016/j.patcog.2018.01.027

    Article  ADS  Google Scholar 

  18. Fong, A.C.M. and Hong, G., Ontology-powered hybrid extensional-intensional learning, Proc. 2019 Int. Conf. on Information Technology and Computer Communications, Singapore, 2019, New York: Association for Computing Machinery, 2019, pp. 18–23. https://doi.org/10.1145/3355402.3355406

  19. Zha, Yu., Chong, H., Qiu, H., Kang, K., Dun, Yu., Chen, Z., Cui, X., and Ning, K., Ontology-aware deep learning enables ultrafast, accurate and interpretable source tracking among sub-million microbial community samples from hundreds of niches, bioRxiv, 2020. https://doi.org/10.1101/2020.11.01.364208

  20. Panigutti, C., Perotti, A., and Pedreschi, D., Doctor XAI, Proc. 2020 Conf. on Fairness, Accountability, and Transparency, Barcelona, 2020, New York: Association for Computing Machinery, 2020, pp. 629–639. https://doi.org/10.1145/3351095.3372855

  21. Bourgeais, V., Zehraoui, F., Ben Hamdoune, M., and Hanczar, B., Deep GONet: Self-explainable deep neural network based on Gene Ontology for phenotype prediction from gene expression data, BMC Bioinf., 2021, vol. 22, no. S10, pp. 1–24. https://doi.org/10.1186/s12859-021-04370-7

    Article  CAS  Google Scholar 

  22. Voogd, J., de Heer, P., Veltman, K., Hanckmann, P., and van Lith, J., Using relational concept networks for explainable decision support, Machine Learning and Knowledge Extraction, Lecture Notes in Computer Science, Cham: Springer, 2019, pp. 78–93. https://doi.org/10.1007/978-3-030-29726-8_6

    Book  Google Scholar 

  23. Abbass, H.A., Elsawah, S., Petraki, E., and Hunjet, R., Machine education: Designing semantically ordered and ontologically guided modular neural networks, 2019 IEEE Symp. Series on Computational Intelligence (SSCI), Xiamen, China, 2019, IEEE, 2019, pp. 948–955. https://doi.org/10.1109/ssci44817.2019.9003083

  24. Bourguin, G., Lewandowski, A., Bouneffa, M., and Ahmad, A., Towards ontologically explainable classifiers, Artificial Neural Networks and Machine Learning–ICANN 2021, Farkaš, I., Msulli, P., Otte, S., and Wermter, S., Eds., Lecture Notes in Computer Science, vol. 12892, Cham: Springer, 2021, pp. 472–484. https://doi.org/10.1007/978-3-030-86340-1_38

    Book  Google Scholar 

  25. Neerincx, M.A., van der Waa, J., Kaptein, F., and van Diggelen, J., Using perceptual and cognitive explanations for enhanced human-agent team performance, Engineering Psychology and Cognitive Ergonomics. EPCE 2018, Harris, D., Ed., Lecture Notes in Computer Science, vol. 10906, Cham: Springer, 2018, pp. 204–214. https://doi.org/10.1007/978-3-319-91122-9_18

    Book  Google Scholar 

  26. Donadello, I. and Dragoni, M., SeXAI: A semantic explainable artificial intelligence framework, AIxIA 2020–Advances in Artificial Intelligence, Baldoni, M. and Bandini, S., Eds., Lecture Notes in Computer Science, vol. 12414, Cham: Springer, 2021, pp. 51–66. https://doi.org/10.1007/978-3-030-77091-4_4

    Book  Google Scholar 

  27. Zagorul’ko, Yu.A., Modern tools of ontology-based subject area semantics formalization, Inf. Mat. Tekhnol. Nauke Upravlenii, 2018, vol. 11, no. 3, pp. 27–36. https://doi.org/10.25729/2413-0133-2018-3-03

    Article  Google Scholar 

  28. Chari, S., Seneviratne, O., Gruen, D.M., Foreman, M.A., Das, A.K., and McGuinness, D.L., Explanation ontology: A model of explanations for user-centered AI, The Semantic Web-ISWC 2020, Pan, J.Z. , Eds., Lecture Notes in Computer Science, vol. 12507, Springer, 2020, pp. 228–243. https://doi.org/10.1007/978-3-030-62466-8_15

    Book  Google Scholar 

  29. Xiong, W., Fan, H., Ma, L., and Wang, C., Challenges of human–machine collaboration in risky decision-making, Front. Eng. Manage., 2022, vol. 9, no. 1, pp. 89–103. https://doi.org/10.1007/s42524-021-0182-0

    Article  Google Scholar 

  30. Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel, S., and Ebel, P., The future of human-ai collaboration: A taxonomy of design knowledge for hybrid intelligence systems, Proc. Annual Hawaii Int. Conf. on System Sciences, Hawaii International Conference on System Sciences, 2019, pp. 274–283. https://doi.org/10.24251/hicss.2019.034

  31. Smirnov, A., Levashova, T., Ponomarev, A., and Shilov, N., Methodology for multi-aspect ontology development: Ontology for decision support based on human–machine collective intelligence, IEEE Access, 2021, vol. 9, pp. 135167–135185. https://doi.org/10.1109/access.2021.3116870

    Article  Google Scholar 

  32. Sandkuhl, K., Shilov, N., and Smirnov, A., Facilitating digital transformation by multi-aspect ontologies: Approach and application steps, IFAC-PapersOnLine, 2019, vol. 52, no. 13, pp. 1609–1614. https://doi.org/10.1016/j.ifacol.2019.11.430

    Article  Google Scholar 

  33. Korzun, D.G., Balandin, S.I., and Gurtov, A.V., Deployment of smart spaces in Internet of Things: Overview of the design challenges, Internet of Things, Smart Spaces, and Next Generation Networking. ruSMART NEW2AN 2013, Balandin, S., Andreev, S., and Koucheryavy, Y., Eds., Lecture Notes in Computer Science, vol. 8121, Berlin: Springer, 2013, pp. 48–59. https://doi.org/10.1007/978-3-642-40316-3_5

    Book  Google Scholar 

  34. Roffia, L., Morandi, F., Kiljander, J., D’elia, A., Vergari, F., Viola, F., Bononi, L., and Salmon Cinotti, T., A semantic publish-subscribe architecture for the Internet of Things, IEEE Internet Things J., 2016, vol. 3, no. 6, pp. 1274–1296. https://doi.org/10.1109/jiot.2016.2587380

    Article  Google Scholar 

  35. The PROV ontology. https://www.w3.org/TR/prov-o/. Cited January 28, 2020.

Download references

Funding

The work was supported by the Russian Science Foundation, project no. 22-11-00214.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ponomarev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, A.V., Ponomarev, A.V., Shilov, N.G. et al. Collaborative Decision Support Systems Based on Neuro-Symbolic Artificial Intelligence: Problems and Generalized Conceptual Model. Sci. Tech. Inf. Proc. 50, 635–645 (2023). https://doi.org/10.3103/S0147688223060151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147688223060151

Keywords:

Navigation