Skip to main content
Log in

Automatic path planning for an unmanned drone with constrained flight dynamics

  • Published:
Scientific and Technical Information Processing Aims and scope

Abstract

In the article we solve path planning task for an agent being multirotor unmanned aerial vehicle (multicopter). We propose an approach of estimating path geometry constraints based on UAV flight dynamics model and control constraints. Than we introduce a new path finding method which takes into consideration those geometry constraints and study this method both theoretically and empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Osipov, G.S., Tikhomirov, I.A., Khachumov, V.M., and Yakovlev, K.S., Intelligent management of vehicles: Standards, projects, and implementations, Aviakosm. Priborostr., 2009, no. 6, pp. 34–43.

    Google Scholar 

  2. Yakovlev, K.S., Makarov, D.A., Panov, A.I., and Zubarev, D.V., Printsipy postroeniya mnogourovnevykh arkhitektur sistem upravleniya bespilotnymi letatel’nymi apparatami, Aviakosm. Priborostr., 2013, no. 4, pp. 10–28.

    Google Scholar 

  3. Kendoul, F., Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems, J. Field Robot., 2012, vol. 29, no. 2, pp. 315–378.

    Article  Google Scholar 

  4. Yakovlev, K.S., Petrov, A.V., and Khit’kov, V.V., Program complex for navigation and control of unmanned vehicles, Inform. Tekhnol. Vychisl. Sistemy, 2013, no. 3, pp. 72–83.

    Google Scholar 

  5. Yap, P., Grid-based path-finding, Proc. 15th Conf. of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence, London: Springer-Verlag, 2002.

    Google Scholar 

  6. Yakovlev, K.S., Specially structured graphs in trajectory planning, Trudy III Mezhdunarodnoi konferentsii “Sistemnyi analiz i informatsionnye tekhnologii SAIT2009” (Proc. 3rd Int. Conf. System Analysis and Information Technology SAIT-2009), 2009.

    Google Scholar 

  7. Wooden, D.T., Graph-based path planning for mobile robots, PhD Thesis, Georgia Institute of Technology, 2006.

    Google Scholar 

  8. Kavraki, L.E., et al., Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Autom., 1996, vol. 12, no. 4, pp. 566–580.

    Article  Google Scholar 

  9. Yakovlev, K.S. and Baskin, E.S., Graph models in trajectory planning in the plane, Iskusstv. Intell. Prinyat. Reshen., 2013, no. 1, pp. 5–12.

    Google Scholar 

  10. Dijkstra, E.W., A note on two problems in connexion with graphs, Numerische mathematik, 1959, vol. 1, no. 1, pp. 269–271.

    Article  MathSciNet  MATH  Google Scholar 

  11. Pearl, J., Heuristics. Reading, Massachusetts: AddisonWesley Publishing Company, 1984.

    Google Scholar 

  12. Hart, P.E., Nilsson, N.J., and Raphael, B., A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Cybern., 1968, vol. 4, no. 2, pp. 100–107.

    Article  Google Scholar 

  13. Korf, R.E., Artificial intelligence search algorithms, in CRC Handbook of Algorithms and Theory of Computation, Atallah, M.J., Ed., Boca Raton, FL: CRC Press, 1998.

    Google Scholar 

  14. Variants of A*. http://theorystanfordedu/~amitp/ GameProgramming/Variationshtml. Cited August 20, 2014.

  15. Likhachev, M. and Stentz, A., R* search, Proc. 23rd AAAI Conf. on Artificial Intelligence, Menlo Park, CA, 2008.

    Google Scholar 

  16. Yakovlev, K.S., HGA*: An efficient algorithm for path planning in the plane, Iskusstv. Intell. Prinyat. Reshen., 2010, no. 2, pp. 16–25.

    Google Scholar 

  17. Latombe, J., Robot Motion Planning, Boston: Kluwer Academic Publishers, 1991.

    Book  Google Scholar 

  18. Kim, H., Park, B., and Myung, H., Curvature path planning with high resolution graph for unmanned surface vehicle, in Robot Intelligence Technology and Applications, 2013. pp. 147–154.

    Google Scholar 

  19. LaValle, S.M. and Kuffner, Jr, J.J., Rapidly-exploring random trees: Progress and prospects, in Algorithmic and Computational Robotics: New Directions, Donald, B.R., Lynch, K.M., and Rus, D., Eds., Wellesley, MA: A.K. Peters, 2001. pp. 293–308.

    Google Scholar 

  20. Bertram, D., et al., An integrated approach to inverse kinematics and path planning for redundant manipulators, Proc. IEEE Int. Conf. on Robotics and Automation ICRA 2006. 2006. 1874.1879.

    Google Scholar 

  21. Zhulev, V.I., Leushkin, V.S., and Nguen, T.N., Robot vehicle local path planning in real time, Vestn. RGRTU, 2013, no. 4(46), pp. 18–23.

    Google Scholar 

  22. Korytov, M.S., Avtomatizatsiya sinteza optimal’nykh traektorii peremeshcheniya gruzov mobil’nymi gruzopod"emnymi kranami v neodnorodnom organizovannom trekhmernom prostranstve (Automation of Synthesis of Optimal Trajectories of Cargo Transfer by Mobile Cranes in the Inhomogeneous Organized ThreeDimensional Space), Omsk: SibADI, 2012.

    Google Scholar 

  23. Haklay, M. and Weber, P., Openstreetmap: User-generated street maps, IEEE Perv. Comput., 2008, vol. 7, no. 4, pp. 12–18.

    Article  Google Scholar 

  24. AscTec Hummingbird. http://wwwasctecde/en/uav-uasdrone-products/asctechummingbird/. Cited August 20, 2014.

  25. Lebedev, A.A. and Chernobrovkin, L.S., Dinamika poleta (Flight Dynamics), Moscow: Oborongiz, 1962.

    Google Scholar 

  26. Schoellig, A.P., Mueller, F.L., D’andrea, R., Optimization-based iterative learning for precise quadrocopter trajectory tracking, Auton. Robots, 2012, vol. 33, no. 1–2, pp. 103–127.

    Article  Google Scholar 

  27. Brescianini, D., Hehn, M., and D’Andrea, R., Quadrocopter pole acrobatics, Intelligent Robots and Systems (IROS), 2013.IEEE/RSJ Int. Conf., 2013. pp. 3472–3479.

    Google Scholar 

  28. Bresenham, J.E., Algorithm for computer control of a digital plotter, IBM Syst. J., vol. 4, no. 1, pp. 25–30.

  29. Daniel, K., et al., Theta*: Any-angle path planning on grids, J. Artif. Intell. Res., 2010, vol. 39, no. 1, pp. 533–579.

    MathSciNet  MATH  Google Scholar 

  30. Munoz, P. and Rodriguez-Moreno, M., Improving efficiency in any-angle path-planning algorithms, Intelligent Systems (IS), 6th IEEE Int. Conf., 2012. pp. 213–218.

    Google Scholar 

  31. Pitteway, M.L.V., Algorithms of conic generation, in Fundamental Agorithms for Computer Graphics, Springer, 1991.

    Google Scholar 

  32. Yakovlev, K., Baskin, E., and Hramoin, I., Finetuning randomized heuristic search for 2D path planning: Finding the best input parameters for R* algorithm through series of experiments, Lect. Notes Comput. Sci., 2014. pp. 278–285.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Yakovlev.

Additional information

Original Russian Text © K.S. Yakovlev, D.A. Makarov, E.S. Baskin, 2014, published in Iskusstvennyi Intellekt i Prinyatie Reshenii, 2014, No. 4, pp. 3–17.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, K.S., Makarov, D.A. & Baskin, E.S. Automatic path planning for an unmanned drone with constrained flight dynamics. Sci. Tech.Inf. Proc. 42, 347–358 (2015). https://doi.org/10.3103/S0147688215050093

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S0147688215050093

Keywords

Navigation