Advertisement

Scientific and Technical Information Processing

, Volume 42, Issue 5, pp 347–358 | Cite as

Automatic path planning for an unmanned drone with constrained flight dynamics

  • K. S. YakovlevEmail author
  • D. A. Makarov
  • E. S. Baskin
Article

Abstract

In the article we solve path planning task for an agent being multirotor unmanned aerial vehicle (multicopter). We propose an approach of estimating path geometry constraints based on UAV flight dynamics model and control constraints. Than we introduce a new path finding method which takes into consideration those geometry constraints and study this method both theoretically and empirically.

Keywords

unmanned vehicle unmanned aerial vehicle intelligent control system planning angle-constrained path planning heuristic search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Osipov, G.S., Tikhomirov, I.A., Khachumov, V.M., and Yakovlev, K.S., Intelligent management of vehicles: Standards, projects, and implementations, Aviakosm. Priborostr., 2009, no. 6, pp. 34–43.Google Scholar
  2. 2.
    Yakovlev, K.S., Makarov, D.A., Panov, A.I., and Zubarev, D.V., Printsipy postroeniya mnogourovnevykh arkhitektur sistem upravleniya bespilotnymi letatel’nymi apparatami, Aviakosm. Priborostr., 2013, no. 4, pp. 10–28.Google Scholar
  3. 3.
    Kendoul, F., Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems, J. Field Robot., 2012, vol. 29, no. 2, pp. 315–378.CrossRefGoogle Scholar
  4. 4.
    Yakovlev, K.S., Petrov, A.V., and Khit’kov, V.V., Program complex for navigation and control of unmanned vehicles, Inform. Tekhnol. Vychisl. Sistemy, 2013, no. 3, pp. 72–83.Google Scholar
  5. 5.
    Yap, P., Grid-based path-finding, Proc. 15th Conf. of the Canadian Society for Computational Studies of Intelligence on Advances in Artificial Intelligence, London: Springer-Verlag, 2002.Google Scholar
  6. 6.
    Yakovlev, K.S., Specially structured graphs in trajectory planning, Trudy III Mezhdunarodnoi konferentsii “Sistemnyi analiz i informatsionnye tekhnologii SAIT2009” (Proc. 3rd Int. Conf. System Analysis and Information Technology SAIT-2009), 2009.Google Scholar
  7. 7.
    Wooden, D.T., Graph-based path planning for mobile robots, PhD Thesis, Georgia Institute of Technology, 2006.Google Scholar
  8. 8.
    Kavraki, L.E., et al., Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robot. Autom., 1996, vol. 12, no. 4, pp. 566–580.CrossRefGoogle Scholar
  9. 9.
    Yakovlev, K.S. and Baskin, E.S., Graph models in trajectory planning in the plane, Iskusstv. Intell. Prinyat. Reshen., 2013, no. 1, pp. 5–12.Google Scholar
  10. 10.
    Dijkstra, E.W., A note on two problems in connexion with graphs, Numerische mathematik, 1959, vol. 1, no. 1, pp. 269–271.CrossRefMathSciNetzbMATHGoogle Scholar
  11. 11.
    Pearl, J., Heuristics. Reading, Massachusetts: AddisonWesley Publishing Company, 1984.Google Scholar
  12. 12.
    Hart, P.E., Nilsson, N.J., and Raphael, B., A formal basis for the heuristic determination of minimum cost paths, IEEE Trans. Cybern., 1968, vol. 4, no. 2, pp. 100–107.CrossRefGoogle Scholar
  13. 13.
    Korf, R.E., Artificial intelligence search algorithms, in CRC Handbook of Algorithms and Theory of Computation, Atallah, M.J., Ed., Boca Raton, FL: CRC Press, 1998.Google Scholar
  14. 14.
    Variants of A*. http://theorystanfordedu/~amitp/ GameProgramming/Variationshtml. Cited August 20, 2014.Google Scholar
  15. 15.
    Likhachev, M. and Stentz, A., R* search, Proc. 23rd AAAI Conf. on Artificial Intelligence, Menlo Park, CA, 2008.Google Scholar
  16. 16.
    Yakovlev, K.S., HGA*: An efficient algorithm for path planning in the plane, Iskusstv. Intell. Prinyat. Reshen., 2010, no. 2, pp. 16–25.Google Scholar
  17. 17.
    Latombe, J., Robot Motion Planning, Boston: Kluwer Academic Publishers, 1991.CrossRefGoogle Scholar
  18. 18.
    Kim, H., Park, B., and Myung, H., Curvature path planning with high resolution graph for unmanned surface vehicle, in Robot Intelligence Technology and Applications, 2013. pp. 147–154.Google Scholar
  19. 19.
    LaValle, S.M. and Kuffner, Jr, J.J., Rapidly-exploring random trees: Progress and prospects, in Algorithmic and Computational Robotics: New Directions, Donald, B.R., Lynch, K.M., and Rus, D., Eds., Wellesley, MA: A.K. Peters, 2001. pp. 293–308.Google Scholar
  20. 20.
    Bertram, D., et al., An integrated approach to inverse kinematics and path planning for redundant manipulators, Proc. IEEE Int. Conf. on Robotics and Automation ICRA 2006. 2006. 1874.1879.Google Scholar
  21. 21.
    Zhulev, V.I., Leushkin, V.S., and Nguen, T.N., Robot vehicle local path planning in real time, Vestn. RGRTU, 2013, no. 4(46), pp. 18–23.Google Scholar
  22. 22.
    Korytov, M.S., Avtomatizatsiya sinteza optimal’nykh traektorii peremeshcheniya gruzov mobil’nymi gruzopod"emnymi kranami v neodnorodnom organizovannom trekhmernom prostranstve (Automation of Synthesis of Optimal Trajectories of Cargo Transfer by Mobile Cranes in the Inhomogeneous Organized ThreeDimensional Space), Omsk: SibADI, 2012.Google Scholar
  23. 23.
    Haklay, M. and Weber, P., Openstreetmap: User-generated street maps, IEEE Perv. Comput., 2008, vol. 7, no. 4, pp. 12–18.CrossRefGoogle Scholar
  24. 24.
    AscTec Hummingbird. http://wwwasctecde/en/uav-uasdrone-products/asctechummingbird/. Cited August 20, 2014.Google Scholar
  25. 25.
    Lebedev, A.A. and Chernobrovkin, L.S., Dinamika poleta (Flight Dynamics), Moscow: Oborongiz, 1962.Google Scholar
  26. 26.
    Schoellig, A.P., Mueller, F.L., D’andrea, R., Optimization-based iterative learning for precise quadrocopter trajectory tracking, Auton. Robots, 2012, vol. 33, no. 1–2, pp. 103–127.CrossRefGoogle Scholar
  27. 27.
    Brescianini, D., Hehn, M., and D’Andrea, R., Quadrocopter pole acrobatics, Intelligent Robots and Systems (IROS), 2013.IEEE/RSJ Int. Conf., 2013. pp. 3472–3479.Google Scholar
  28. 28.
    Bresenham, J.E., Algorithm for computer control of a digital plotter, IBM Syst. J., vol. 4, no. 1, pp. 25–30.Google Scholar
  29. 29.
    Daniel, K., et al., Theta*: Any-angle path planning on grids, J. Artif. Intell. Res., 2010, vol. 39, no. 1, pp. 533–579.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Munoz, P. and Rodriguez-Moreno, M., Improving efficiency in any-angle path-planning algorithms, Intelligent Systems (IS), 6th IEEE Int. Conf., 2012. pp. 213–218.Google Scholar
  31. 31.
    Pitteway, M.L.V., Algorithms of conic generation, in Fundamental Agorithms for Computer Graphics, Springer, 1991.Google Scholar
  32. 32.
    Yakovlev, K., Baskin, E., and Hramoin, I., Finetuning randomized heuristic search for 2D path planning: Finding the best input parameters for R* algorithm through series of experiments, Lect. Notes Comput. Sci., 2014. pp. 278–285.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • K. S. Yakovlev
    • 1
    Email author
  • D. A. Makarov
    • 1
  • E. S. Baskin
    • 1
  1. 1.Institute for Systems AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations