Skip to main content
Log in

The Skyline of Paleopedology

  • Published:
Moscow University Soil Science Bulletin Aims and scope

Abstract

Paleopedology is a booming scientific discipline that studies the soils of the past geological epochs in order to assess the paleoenvironmental evolution. The scope of paleosol studies embraces not only soils themselves, but also the products of their involvement in biogeosphere cycles. This ensures the planetary role of pedogenesis, which includes the transformation of the upper layers of the lithosphere leading to the increase in fine earth, formation of new minerals, and residual or accumulative concentration of elements. In the geological history of the Earth, pedogenesis is realized within the framework of exogenesis, which includes weathering, soil formation, sedimentation, diagenesis, and geochemical migration. The pedolithosphere records the critical points in the landscape evolution of the Earth from the very onset of the geological record, including the oxygenation of the atmosphere, the emergence of the higher plants and herbaceous biomes, the dynamics of Interglacial–Glacial cycles, etc. Paleosols are the base for paleogeographic reconstructions and predictive models of the future climate change. Paleopedology expands the horizons of soil science within the system of biogeosphere sciences and determines the development of new scientific disciplines—bacterial paleontology, paleogeochemistry, biogeomorphology, astropedology, geoarchaeology, ecological paleopedology, soil paleocryogenesis and cryobiosphere studies. The historical dimension granted by paleopedology makes pedology a mature historical science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alekseev, A.O., Kalinin, P.I., and Alekseeva, T.V., Soil indicators of paleoenvironmental conditions in the south of the east European Plain in the Quaternary Time, Eurasian Soil Sci., 2019, vol. 52, no. 4, pp. 349–359.

    Article  Google Scholar 

  2. Alekseeva, T.V., Soils in Devonian and Carboniferous. Current state of knowledge in Russia: A review, Eurasian Soil Sci., 2020, vol. 53, no. 10, pp. 1343–1354.

    Article  Google Scholar 

  3. Alekseeva, T.V., Alekseev, A.O., and Kalinin, P.I., The Mississippian paleosols in the Brontsy Quarry, Kaluga region, Eurasian Soil Sci., 2018, vol. 51, no. 7, pp. 744–758.

    Article  Google Scholar 

  4. Alonso-Zarza, A.M., Wright, V.P., Calvo, J.P., et al., Soil landscape and climatic relationships in the Middle Miocene of the Madrid basin, Sedimentology, 1992, vol. 39, no. 1, pp. 17–35.

    Article  Google Scholar 

  5. Basilici, G. and Führ Dal’ Bo, P.F., Anatomy and controlling factors of a late cretaceous aeolian sand sheet: The Marília and the Adamantina formations, NW Bauru Basin, Brazil, Sediment. Geol., 2010, vol. 226, no. 1–4.

  6. Borisov, A., Krivosheev, M.V., Mimokhod, R.A., et al., “Sod blocks” in kurgan mounds: Historical and soil features of the technique of tumuli erection, J. Archaeol. Sci., 2019, vol. 24, no. 9, pp. 122–131.

    Google Scholar 

  7. Buckland, W., Geology and Mineralogy Considered with Respect to Natural Theology, London, 1837.

    Book  Google Scholar 

  8. Chumakov, N.M., General trend of climatic changes on the Earth during the last 3 Ga, Dokl. Earth Sci., 2001, vol. 381, no. 9, pp. 1034–1038.

    Google Scholar 

  9. Corenblit, D., Baas, A.C.W., Bornette, G., et al., Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings, Earth-Sci. Rev., 2011, vol. 106, pp. 307–331.

    Article  Google Scholar 

  10. Davies, N.S. and Gibling, M.R., The co-evolution of fixed-channel alluvial plains and carboniferous vegetation, Nat. Geosci., 2011, vol. 4, no. 9.

  11. Demkin, V.A., Paleopochvovedenie i arkheologiya: integratsiya v izuchenii prirody i obshchestva (Paleopedology and Archeology: Integration for Nature and Social Research), Pushchino, 1997.

  12. Dergacheva, M.I., Arkheologicheskoe pochvovedenie (Archeological Soil Science), Novosibirsk, 1997.

    Google Scholar 

  13. Dobrovol’skii, G.V., The role and meaning of soils in the Earth’s life establishment and evolution, in Evolyutsiya biosfery i bioraznoobraziya (Evolution of Biosphere and Biovariety), Moscow, 2006.

  14. Dobrovol’skii, G.V. and Makeev, A.O., Paleopedology and paleontology, in Trudy In-ta ekologicheskogo pochvovedeniya Mosk. gos. univ. im. M.V. Lomonosova (Institute of Ecological Soil Science of Moscow State Univ.), Moscow, 2009, vol. 9.

    Google Scholar 

  15. Dobrovol’skii, G.V., Karpachevskii, L.O., and Kriksunov, E.A., Geosfery i pedosfera (Geospheres and Pedosphere), Moscow, 2010.

    Google Scholar 

  16. Dokuchaev, V.V., Izbrannye sochineniya (Selected Works), Moscow, 1949, vol. 3.

    Google Scholar 

  17. Fersman, A.E., Geokhimiya (Geochemistry), Moscow, 1937, vol. 1.

    Google Scholar 

  18. Gerasimov, I.P., Nature and originality of paleosols, in Paleopedology: Origin, Nature and Dating of Paleosols, Yaalon, D., Ed., Jerusalem, 1971.

    Google Scholar 

  19. Gladenkov, Yu.B., Biosfernaya stratigrafiya (problemy stratigrafii XXI veka) (Biospherical Stratigraphy. Problems on 21st Century Stratigraphy), Moscow, 2004.

  20. Glazovskaya, M.A., Pedolitogenez i kontinental’nye tsikly ugleroda (Pedolithogenesis and Continental Carbon Cycles), Moscow, 2009.

    Google Scholar 

  21. Glinka, K.D., The goals of historical soil science, in Zap. Novo-Aleksandr. In-ta sel. khoz-va i lesovodstva (Notes of Novo-Aleksandrovskii Institute of Agriculture and Forestry), Warsaw, 1904, vol. 16, issue 2.

  22. Global Soil Change. Report of an IIASA-IUSS-UNEP Task Force on the Role of Soil in Global Change, Arnold, R.W., Szabolcs, I., and Targulian, V.O., eds., Budapest, 1990.

    Google Scholar 

  23. Goldshmidt, V.M., Geochemistry, Oxford: Clarendon Press, 1954.

    Google Scholar 

  24. Guidebook for field excursions, Proc. 12th Int. Symp. and Field Seminar on Paleopedology, Moscow, 2013.

  25. Holliday, V.T., Soils in Archaeological Research, Oxford Univ. Press, 2004.

    Book  Google Scholar 

  26. Hutton, J., Theory of the Earth with Proofs and Illustrations, Edinburgh, 1795, vol. 1.

    Google Scholar 

  27. Inozemtsev, S.A. and Targulian, V.O., Verkhnepermskie paleopochvy: svoistva, protsessy i usloviya formirovaniya (Upper Permian Paleosols Properties, Processes and Formation Conditions), Moscow, 2010.

  28. Khokhlova, O.S. and Nagler, A.O., Kurgan Marfa in the Stavropol Territory as an example of an ancient architectural structure studied using approaches of soil science, Archaeol. Ethnol. Anthropol. Eurasia, 2020, vol. 48, no. 2.

  29. Kovalevskii, V.O., Sobranie nauchnykh trudov (Collection of Scientific Papers), Moscow, 1956, vol. 2.

  30. Kovda, V.A., Osnovy ucheniya o pochvakh (Foundation of Soil Science), Moscow, 1973, vol. 1.

  31. Kovda, V.A., Problemy opustynivaniya i zasoleniya pochv aridnykh regionov mira (Problems on Soils Desertification and Salination in the World’s Arid Regions), Moscow, 2008.

    Google Scholar 

  32. Krasilnikov, P. and García-Calderón, N.E., A WRB-based buried paleosol classification, Quat. Int., 2006, vol. 156, suppl. 1, pp. 176–188.

    Article  Google Scholar 

  33. Krasilov, V.A., Discussion problems on classification and nomenclature for ecostratigraphy, in Ekosistemy v stratigrafii (Ecosystems in Stratigraphy), Vladivostok, 1980.

    Google Scholar 

  34. Lisiecki, L.E. and Raymo, M.E., A pliocene-pleistocene stack of 57 globally distributed benthic δ18O records, Paleoceanography, 2005, vol. 20, no. 1.

  35. Lomonosov, M.V., On the Strata of the Earth. A translation of O sloyach zemnykh, Geol. Soc. Am., 2012, vol. 485. https://doi.org/10.1130/SPE485 .

  36. Macphail, R. and Goldberg, P., Applied Soils and Micromorphology in Archaeology, Cambridge Univ. Press, 2017.

    Book  Google Scholar 

  37. Makeev, A.O., Poverkhnostnye paleopochvy lessovykh vodorazdelov Russkoi ravniny (Surface Paleosols at Loess Uplands at the Russian Plane), Moscow, 2012a.

    Google Scholar 

  38. Makeev, A.O., Soils ecological role in the Earth’s geological history, in Pochvy v biosfere i zhizni cheloveka (Soils in Biosphere and Human Life), Moscow, 2012b.

    Google Scholar 

  39. Makeev, A., Aseyeva, E., Rusakov, A., et al., The environment of the Early Iron Age at the southern fringe of the forest zone of the Russian plain, Quat. Int., 2019, vol. 502, pp. 218–237.

    Article  Google Scholar 

  40. Makeev, A., Rusakov, A., Kurbanova, F., et al., Soils at archaeological monuments of the bronze age – a key to the Holocene landscape dynamics in the broadleaf forest area of the Russian Plain, Quat. Int., 2021, vol. 590, pp. 26–47.

    Article  Google Scholar 

  41. Markovic, S.B., Smalley, J., Hambach, U., et al., Loess in the Danube region and surrounding loess provinces: The Marsigli memorial volume, Quat. Int., 2009, vol. 198, no. 1, pp. 5–6.

    Article  Google Scholar 

  42. Markovic, S.B., Stevens, T., Kukla, G.J., et al., Danube loess stratigraphy – towards a pan-European loess stratigraphic model, Earth-Sci. Rev., 2015, vol. 148, no. 4–5.

  43. Morrison, R.B., How can the treatment of pedostratigraphic units in the North American stratigraphic code be improved?, Quat. Int., 1998, vol. 51/52, pp. 30–33.

    Article  Google Scholar 

  44. Muhs, D., The geochemistry of loess: Asian and North American deposits compared, J. Asian Earth Sci., 2018, vol. 155, pp. 81–115.

    Article  Google Scholar 

  45. Murakami, T., Utsunomiya, S., Imazu, Y., et al., Direct evidence of late Archean to early Proterozoic anoxic atmosphere from a product of 2.5 Ga old weathering, Earth Planet. Sci. Lett., 2001, vol. 184, no. 2, pp. 523–528.

    Article  Google Scholar 

  46. Murton, J.B., Goslar, T., Edwards, M.E., et al., Palaeoenvironmental interpretation of Yedoma silt (Ice Complex) deposition as cold-climate loess, Duvanny Yar, Northeast Siberia, Permafrost Periglacial Process, 2015, vol. 26, no. 3.

  47. Nedachi, Y., Nedachi, M., Bennett, G., et al., Geochemistry and mineralogy of the 2.45 Ga Pronto paleosols, Ontario, Canada, Chem. Geol., 2005, vol. 214, no. 1, pp. 21–44.

    Article  Google Scholar 

  48. Nicosia, C. and Stoops, G., Archaeological Soil and Sediment Micromorphology, Wiley-Blackwell, 2017.

    Book  Google Scholar 

  49. Paleopedologiya (Paleopedology), Kiev, 1974.

  50. Paleopedology glossary, Paleopedol. Comm. Newslett., 1997, no. 14. http://fadr.msu.ru/inqua/nl-14/glossary.html. Cited 26.06.2023.

  51. Phillips, J.D., Soils as extended composite phenotypes, Geoderma, 2009, vol. 149, no. 1–2, pp. 143–151.

    Article  Google Scholar 

  52. Polynov, B.B., Time as a soil forming factor, Izv. Pochv. Kom., 1917, no. 3-4.

  53. Polynov, B.B., To the problem on biosphere elements role in organisms evolution, Pochvovedenie, 1948, no. 10.

  54. Polynov, B.B., Izbrannye trudy (Selected Works), Moscow, 1956.

    Google Scholar 

  55. Ranov, V.A., Kolobova, K.A., and Krivoshapkin, A.I., The Upper Paleolithic assemblages of Shugnou, Tajikistan, Archaeol. Ethnol. Anthropol. Eurasia, 2012, vol. 40, no. 2, pp. 2–24.

    Article  Google Scholar 

  56. Razumovskii, S.M., Zakonomernosti dinamiki biotsenozov (Regularities of Biocenosises Dynamics), Moscow, 1981.

  57. Retallack, G.J., Soils of the Past. An Introduction to Paleopedology, 3rd ed., Chichester: Wiley, 2019.

    Google Scholar 

  58. Retallack, G.J. and Germán-Heins, J., Evidence from paleosols for the geological antiquity of rain forest, Science, 1994, vol. 265, no. 5171.

  59. Retallack, G.J., Gose, B.N., and Osterhout, J.T., Periglacial paleosols of cryogenian and paleoclimate near Adelaide, South Australia, Precambrian Res., 2015, vol. 263, pp. 1–18.

    Article  Google Scholar 

  60. Ruddiman, W.F., Cold climate during the closest Stage 11 analog to recent Millennia, Quat. Sci. Rev., 2005, vol. 24, no. 10–11.

  61. Ruhe, R.V., Quaternary Paleopedology, Wright H.E. and Frey D.G., Eds., Princeton: Princeton Univ. Press, 1965.

    Book  Google Scholar 

  62. Rusakov, A.V., Makeev, A.O., Khokhlova, O.S., et al., Paleoenvironmental reconstruction based on soils buried under Scythian fortification in the southern forest-steppe area of the East European Plain, Quat. Int. B, 2019, vol. 502, pp. 197–217.

    Article  Google Scholar 

  63. Sedov, S.N., Solleiro-Rebolledo, E., and Gama-Castro, J.E., Andosol to Luvisol evolution in Central Mexico: Timing, mechanisms and environmental setting, Catena, 2003, vol. 54, no. 3, pp. 495–513.

    Article  Google Scholar 

  64. Sheldon, N.D., Do red beds indicate paleoclimatic conditions? A Permian case study, Palaeogeogr., Palaeoclimatol., Palaeoecol., 2005, vol. 228, no. 3, pp. 305–319.

    Article  Google Scholar 

  65. Sheldon, N.D. and Tabor, N.J., Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols, Earth-Sci. Rev., 2009, vol. 95, no. 1–2, pp. 1–52.

    Article  Google Scholar 

  66. Sokolov, I.A., The main geographical and genetical conceptions and terms, Pochvovedenie, 1976, no. 12.

  67. Sokolov, I.A., Pochvoobrazovanie i ekzogenez (Soil Formation and Exogenesis), Moscow, 1997.

    Google Scholar 

  68. Soreghan, G.S., Heavens, N.G., Pfeifer, L.S., et al., Dust and Loess as Archives and Agents of Climate and Climate Change in the Late Paleozoic Earth System, London: Geological Society, 2022, vol. 535.

    Google Scholar 

  69. Strauss, J., Schirrmeister, L., Grossea, G., et al., Deep Yedoma permafrost: A synthesis of depositional and carbon vulnerability, Earth-Sci. Rev., 2017, vol. 172, pp. 75–86.

    Article  Google Scholar 

  70. Sycheva, S., Frechen, M., Terhorst, B., et al., Pedostratigraphy and chronology of the Late Pleistocene for the extra glacial area in the Central Russian Upland (reference section Aleksandrov quarry), Catena, 2020, vol. 194, p. 104689.

  71. Targulian, V.O., Teoriya pedogeneza i evolyutsii pochv (The Theory of Pedogenesis and Soil Evolution), Moscow, 2019.

  72. Van Breemen, N., Soils as biotic constructs favouring net primary productivity, Geoderma, 1993, vol. 57, no. 3, pp. 183–211.

    Article  Google Scholar 

  73. Velichko, A.A., Morozova, T.D., Nechaev, V.P., et al., Loess/paleosols/cryogenic formation and structure near the northern limit of loess deposition, East European Plain, Russia, Quat. Int., 2006, vol. 152–153, pp. 14–30.

    Article  Google Scholar 

  74. Vernadskii, V.I., Izbrannye sochineniya (Selected Works), Moscow, 1960, vol. 5.

    Google Scholar 

  75. Vernadskii, V.I., Khimicheskoe stroenie biosfery Zemli i ee okruzheniya (Chemical Structure of the Earth’s Biosphere and Its Environment), Moscow, 1965.

    Google Scholar 

  76. Vernadskii, V.I., Living matter role in soil formation, in Trudy po biogeokhimii i geokhimii pochv (Scientific Works on Biogeochemistry and Soils Biochemistry), Moscow, 1992.

    Google Scholar 

  77. Wanas, H.A. and Abu El-Hassan, M.M., Paleosols of the upper cretaceous-lower tertiary Maghra El-Bahari formation in the northeastern portion of the Eastern Desert, Egypt: Their recognition and geological significance, Sed. Geol., 2006, vol. 183, no. 3–4, pp. 243–259.

    Article  Google Scholar 

  78. Zanina, O.G., Gubin, S.V., Kuzmina, S.A., et al., Late-Pleistocene (MIS 3-2) palaeoenvironments as recorded by sediments, palaeosols, and ground-squirrel nests at Duvanny Yar, Kolyma lowland, northeast Siberia, Quat. Sci. Rev., 2011, vol. 30, no. 17–18, pp. 2107–2123.

    Article  Google Scholar 

  79. Zavarzin, G.A., The envolvement of the biosphere, Herald Russ. Acad. Sci., 2001, vol. 71, no. 6, pp. 611–623.

    Google Scholar 

  80. Zavarzin, G.A., Formation of the system of biogeochemical cycles, Paleontol. J., 2003, vol. 37, no. 6, pp. 576–584.

    Google Scholar 

  81. Zherikhin, V.V., Biocenosis regulation for evolution, Paleontol. Zh., 1986, no. 1.

  82. Zimov, S.A., Zimov, N.S., Tikhonov, A.N., and Chapin III, F.S., Mammoth steppe: A high productivity phenomenon, Quat. Sci. Rev., 2012, vol. 57, pp. 26–45.

    Article  Google Scholar 

Download references

Funding

The work was prepared with the support of the Russian Science Foundation, grant no. 23-17-00073.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.O. Makeev.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Allerton Press remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeev, A., Rusakov, A.V. The Skyline of Paleopedology. Moscow Univ. Soil Sci. Bull. 78, 339–351 (2023). https://doi.org/10.3103/S014768742304004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S014768742304004X

Keywords:

Navigation