Advertisement

Moscow University Soil Science Bulletin

, Volume 73, Issue 1, pp 34–38 | Cite as

Effect of Amorphous Silicon Dioxide on Cadmium Behavior in the Soil–Rice Plant System

  • Pengbo Zhang
  • Yuqiao Liu
  • E. A. Bocharnikova
  • V. V. Matichenkov
  • D. M. Khomiakov
  • E. P. Pakhnenko
Ecological Safety
  • 17 Downloads

Abstract

The effect of amorphous silicon dioxide (SiO2) on cadmium behavior in the soil–plant system was studied in a field experiment on a flooded paddy soil slightly contaminated by cadmium. The application of amorphous SiO2 results in a 1.3- to 1.8-fold smaller cadmium accumulation in the aboveground organs of rice and a 1.8- to 2.6-fold decrease in the content of its available compounds, which can be explained by metal sorption on the surface of applied silicon dioxide and by the reaction of monosilicic acid, which forms in the SiO2 solution, with cadmium. The decrease in cadmium availability is most intensive in the first 2 weeks after SiO2 application. Amorphous silicon causes a 26.6% increase in rice productivity in the first season and 72.9% in the second. The data obtained testify to the fact that the application rates of traditional mineral fertilizers can be decreased without risk to rice productivity if silicon compounds are used. They should become an integral and important part of implementing the 4R-STRATEGY for fertilizer application and plant nutrition optimization.

Keywords

cadmium in soil and plants monosilicic acid rice harvest 4R-STRATEGY for fertilizer application and plant nutrition optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozlov, A.V. and Uromova, I.P., Effektivnost’ kremniisoderzhashchikh veshchestv v optimizatsii svoistv i povyshenii produktivnosti pochv Nizhegorodskoi oblasti (The Efficiency of Silicon-Containing Substances for Optimizing Soil Properties and Increasing Soils Fertility in Nizhny Novgorod Oblast), Nizhny Novgorod, 2017.Google Scholar
  2. 2.
    Matychenkov, V.V., Soils gradation according to deficit of silicon available for plants, Agrokhimiya, 2007, no. 7.Google Scholar
  3. 3.
    4R-STRATEGIYa. Prakticheskoe rukovodstvo po primeneniyu udobrenii i optimizatsii pitaniya rastenii (4RSTRATEGIYa. Practical Guide on Fertilizers Application and on Plants Nutrition Optimization), Moscow, 2017.Google Scholar
  4. 4.
    Azevedo, R.A., Gratao, P.L., Monteiro, C.C., and Carvalho, R., What is new in the research on cadmiuminduced stress in plants?, Food Energy Secur., 2012, vol. 1, no. 2 doi 10.1002/fes3.10Google Scholar
  5. 5.
    Bassi, R., Prasher, S.O., and Simpson, B.K., Extraction of metals from a contaminated sandy soil using citric acid, Environ. Prog. Sustainable Energy, 2000, vol. 19, no. 4 doi 10.1002/ep.670190415Google Scholar
  6. 6.
    Bauer, P., Elbaum, R., and Weiss, I.M., Calcium and silicon mineralization in land plants: transport, structure and function, Plant Sci., 2011, vol. 180, no. 6 doi 10.1016/j.plantsci.2011.01.019Google Scholar
  7. 7.
    Dresler, S., Wojcik, M., Bednarek, W., et al., The effect of silicon on maize growth under cadmium stress, Russ. J. Plant Physl., 2015, vol. 62, no. 1 doi 10.1134/ S1021443715010057Google Scholar
  8. 8.
    Grant, C., Flaten, D., Tenuta, M., et al., The effect of rate and Cd concentration of repeated phosphate fertilizer applications on seed Cd concentration varies with crop type and environment, Plant Soil, 2013, vol. 372, nos. 1–2. doi 10.1007/s11104-013-1691-3Google Scholar
  9. 9.
    Hasan, S.A., Fariduddin, Q.A., Hayat, S., and Ahmad, A., Cadmium: toxicity and tolerance in plants, Environ. Biol., 2009, vol. 30, no. 2Google Scholar
  10. 10.
    Iler, R.K., The Chemistry of Silica, New York, 1979.Google Scholar
  11. 11.
    Ma, J.F. and Takahashi, E., Soil, Fertilizer, and Plant Silicon Research in Japan, Amsterdam, 2002.Google Scholar
  12. 12.
    Moecirc, S., Effect of cadmium on germination, growth, redox and oxidative properties in Pisumsativum seeds, Environ. Chem. Ecotoxicol., 2011, vol. 3, no. 3Google Scholar
  13. 13.
    Nagajyoti, P.C., Lee, K.D., and Sreekanth, T.V., Heavy metals, occurrence and toxicity for plants: a review, Environ. Chem. Lett., 2010, vol. 8, no. 3, pp. 199–216. doi doi 10.1007/s10311-010-0397-8CrossRefGoogle Scholar
  14. 14.
    Nordberg, G.F., Nogawa, K., Nordberg, M., and Friberg, L., Cadmium, in Handbook on the Toxicology of Metals, Amsterdam, 2007.Google Scholar
  15. 15.
    Sauerbeck, D., Der Transfer von Schwermetallen in die Pflanze, in Beurteilung von Schwermetallkontaminationen im Boden, Frankfur am Mainz: Fachgespra che Umweltschutz DECHEMA, 1989.Google Scholar
  16. 16.
    Shi, X., Zhang, C., Wang, H., and Zhang, F., Effect of Si on the distribution of Cd in rice seedlings, Plant Soil, 2005, vol. 272, nos. 1–2, pp. 53–60. doi 10.1007/ s11104-004-3920-2CrossRefGoogle Scholar
  17. 17.
    Sommer, M., Kaczorek, D., Kuzyakov, Y., and Breuer, J., Silicon pools and fluxes in soils and landscapes–a review, Plant Nutrit. Soil Sci., 2006, vol. 169, no. 3 doi 10.1002/jpln.200521981Google Scholar
  18. 18.
    Song, A., Li, Z., Xue, G., et al., Silicon-enhanced resistance to cadmium toxicity in Brassica chinesis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity, J. Hazard Mater., 2009, vol. 172, no. 1, pp. 74–83. doi 10.1016/j.jhazmat.2009.06.143CrossRefGoogle Scholar
  19. 19.
    Tirado, R. and Allsopp, M., Phosphorus in Agriculture: Problems and Solutions, Amsterdam: Greenpeace Int., 2012.. http://greenpeace.org.Google Scholar
  20. 20.
    Vaculik, M., Pavlovic, A., and Lux, A., Silicon alleviates cadmium toxicity by enhanced photosynthetic rate and modified bundle sheath’s cell chloroplasts ultrastructure in maize, Ecotoxicol. Environ. Saf., 2015, vol. 120, pp. 66–73. doi 10.1016/j.ecoenv.2015.05.026CrossRefGoogle Scholar
  21. 21.
    Wang, H.Y., Wen, S.L., Chen, P., et al., Mitigation of cadmium and arsenic in rice grain by applying different silicon fertilizers in contaminated fields, Environ. Sci. Pollut. Res., 2016, vol. 23, no. 4 doi 10.1007/s11356- 015-5638-5Google Scholar
  22. 22.
    Zhao, Q., Wang, Y., Cao, Y., et al., Potential health risks of heavy metals in cultivated topsoil and grain, including correlations with human primary liver, lung and gastric cancer, in Anhui province, Eastern China, Sci. Total Environ., 2014, vol. 470–471, pp. 340–347. doi 10.1016/j.scitotenv.2013.09.086CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Pengbo Zhang
    • 1
  • Yuqiao Liu
    • 1
  • E. A. Bocharnikova
    • 2
  • V. V. Matichenkov
    • 3
  • D. M. Khomiakov
    • 4
  • E. P. Pakhnenko
    • 4
  1. 1.Institute of Economic Geography of Hunan ProvinceHunanPeople’s Republic of China
  2. 2.Institute of Physicochemical and Biological Problems of Soil ScienceRussian Academy of SciencesPushchinoRussia
  3. 3.Institute of Fundamental Problems of BiologyRussian Academy of SciencesPushchinoRussia
  4. 4.Department of Soil ScienceMoscow State UniversityMoscowRussia

Personalised recommendations