Moscow University Soil Science Bulletin

, Volume 73, Issue 1, pp 18–25 | Cite as

Cesium-137 Root Uptake by Oat and Lettuce Test Crops from Radioactively Contaminated Chernozem under Model Experiment Conditions

  • T. A. Paramonova
  • N. V. Kuzmenkova
  • M. M. Godyaeva
  • V. R. Belyaev
  • M. M. Ivanov
  • G. I. Agapkina
Ecological Safety


The features of cesium-137 (137Cs) root uptake by spring oat (Avena sativa L.) and lettuce (Lactuca sativa L.) plants have been studied in a model experiment with simulation of radionuclide fallout into undisturbed monoliths of arable chernozems from the Plavsk radioactive spot. An integrated approach using digital autoradiography and γ-spectrometry methods has revealed a uniform pattern of vertical and lateral 137Cs distribution in the soil profile and low bioavailability of the radionuclide or root uptake by plants. Certain biological features of the test crops with respect to root uptake of 137Cs have been demonstrated: limited translocation of the element into shoots via its relative accumulation in roots for oats and limitation of general root uptake of 137Cs into plants, given its uniform distribution between roots and shoots for lettuce.


cesium-137 (137Cs) radioactive contamination soil–plant system transfer factor digital autoradiography γ-spectrometry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Agroklimaticheskii spravochnik po Tul’skoi oblasti (Agrochemical Handbook for Tula Oblast), Moscow, 1966.Google Scholar
  2. 2.
    Aleksakhin, P.M., Prister, B.S., Sanzharova, N.I., et al., Radioactive pollution of agroecological ecosystems, in Radioekologicheskie posledstviya Chernobyl’skoi avarii (Radioecological Afterwards of Chernobyl Accident), Kryshev, I.I., Ed., Moscow, 1991.Google Scholar
  3. 3.
    Anisimov, A.S., Sanzharova, N.I., and Aleksakhin, R.M., 137Cs forms and vertical distribution in soils at Chernobyl accident zone, Pochvovedenie, 1991, no. 9.Google Scholar
  4. 4.
    Izrael’, Yu.A., Atlas zagryazneniya Evropy tseziem posle Chernobyl’skoi avarii (Europe Pollution by Cesium after the Chernobyl Accident. Atlas), Luxemburg, 1998.Google Scholar
  5. 5.
    GOST (State Standard) 33061-2014: Methods for Testing Chemical Products being Dangerous for the Environment. On-ground Plants: Test on Seeds Germinating Ability and Germs Development, Moscow, 2016.Google Scholar
  6. 6.
    Konopleva, I.V., Selective sorption of radioactive cesium by sorbents on the base of natural clays, in Sorbtsionnye i khromatograficheskie protsessy (Sorption and Chromatographic Processes), Voronezh, 2016, vol. 16.Google Scholar
  7. 7.
    Paramonova, T.A., Belyaev, V.R., Ivanov, M.M., et al., Analysis of 137Cs vertical distribution over the plough chernozems profile under different schemes of their cultivation, in Radioaktivnost’ posle yadernykh vzryvov i avarii: posledstviya i puti preodoleniya (Radioactivity after Nuclear Explosions and Accidents: Afterwards and Ways for Overcoming Them), Obninsk, 2016.Google Scholar
  8. 8.
    Rossiiskii natsional’nyi doklad: 30 let chernobyl’skoi avarii. Itogi i perspektivy preodoleniya ee posledstvii v Rossii. 1986–2016 (Russian National Report. 30th Anniversary of Chernobyl Accident. Results and Trends of Overcoming in Russia. 1986–2016), Puchkov, V.A. and Bol’shov, L.A., Eds., Moscow, 2016.Google Scholar
  9. 9.
    Sanzharova, N.I., Ratnikov, A.N., Spiridonov, S.I., et al., Tekhnologicheskie priemy, obespechivayushchie povyshenie ustoichivosti agrotsenozov, vosstanovlenie narushennykh zemel’, optimizatsiyu vedeniya zemledeliya i poluchenie sootvetstvuyushchei normativam sel’skokhozyaistvennoi produktsii tovaroproizvoditelyami razlichnoi spetsializatsii (Technological Methods for Increasing Agrocenosises Stability, Restoring Disturbed Soils, Agriculture Optimization and Producing Agricultural Production Corresponding to Norms, Produced by Different Commodity Producers), Obninsk, 2010.Google Scholar
  10. 10.
    Sanzharova, N.I., Fesenko, S.V., Shubina, O.A., et al., Radionuclides migration in agricultural ecosystems: revision of migration parameters, Radiats. Biol. Radioekol., 2009, vol. 49, no. 3Google Scholar
  11. 11.
    Sel’skokhozyaistvennaya radioekologiya (Agricultural Radioecology), Aleksakhin, R.M. and Korneev, N.A., Eds., Moscow, 1992.Google Scholar
  12. 12.
    Soldatenko, A.V., Ecological aspects for controlling radionuclides accumulation by vegetables, Doctoral (Agric.) Dissertation, Moscow, 2016.Google Scholar
  13. 13.
    Fokin, A.D., Torshin, S.P., Bebneva, Yu.M., et al., Input of 137Cs and 90Sr into plants from the surface of soil aggregates and the intraped space, Eurasian Soil Sci., 2014, vol. 47, no. 12, pp. 1198–1206.CrossRefGoogle Scholar
  14. 14.
    Fokin, A.D., Torshin, S.P., and Kaupenjohann, M., The formation of initial gradients of 137Cs concentrations in soils at the aggregate level, Eurasian Soil Sci., 2003, vol. 36, no. 8, pp. 826–832.Google Scholar
  15. 15.
    Comans, R.N.J. and Hockley, D.E., Kinetics of cesium sorption on illite, Geochim. Cosmochim. Acta, 1992, vol. 56, no. 3, pp. 1157–1164.CrossRefGoogle Scholar
  16. 16.
    ISO 11269-2:2012: Soil Quality—Determination of the Effects of Pollutants on Soil Flora. Part 2: Effects of Contaminated Soil on the Emergence and Early Growth of Higher Plants, Geneva: Int. Stand. Org., 2012.Google Scholar
  17. 17.
    IAEA, Handbook of Parameter Values for the Prediction of Radionuclide Transfer in Terrestrial and Freshwater Environments, Vienna, 2010, no. 472.Google Scholar
  18. 18.
    Korobova, E.M., Dogadkin, N.N., Shiryaev, A.A., et al., A study of Cs-137 spatial distribution in soil thin sections by digital autoradiography and microscopy, J. Geochem. Explor., 2014, vol. 142, pp. 94–100.CrossRefGoogle Scholar
  19. 19.
    Nakanishi, H., Tanaka, H., Takeda, K., et al., Radioactive cesium distribution in bamboo (Phyllostachys reticulata (Rupr) K. Koch) shoots after the TEPCO Fukushima Daiichi Nuclear Power Plant disaster, Soil Sci. Plant Nutr., 2014, vol. 60, no. 6Google Scholar
  20. 20.
    Quantification of Radionuclide Transfer in Terrestrial and Freshwater Environments for Radiological Assessments, IAEA-TECDOC-1616, Vienna, 2009.Google Scholar
  21. 21.
    Quinto, F., Sabbarese, C., Visciano, L., et al., 137Cs, 60Co and 40K uptake by lettuce plants in two distributions of soil contamination, J. Environ. Radioact., 2009, vol. 100, no. 8, pp. 607–612.CrossRefGoogle Scholar
  22. 22.
    Soudek, P., Tykva, R., and Vanek, T., Laboratory analyses of 137Cs uptake by sunflower, reed and poplar, Chemosphere, 2004, vol. 55, no. 7, pp. 1081–1087.CrossRefGoogle Scholar
  23. 23.
    Staunton, S. and Roubaud, M., Adsorption of 137Cs on montmorillonite and illite: effect of charge compensating cation, ionic strength, concentration of Cs, K and fulvic acid, Clays Clay Miner., 1997, vol. 45, no. 2Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • T. A. Paramonova
    • 1
  • N. V. Kuzmenkova
    • 2
  • M. M. Godyaeva
    • 1
  • V. R. Belyaev
    • 3
  • M. M. Ivanov
    • 3
  • G. I. Agapkina
    • 1
  1. 1.Department of Soil ScienceMoscow State UniversityMoscowRussia
  2. 2.Department of ChemistryMoscow State UniversityMoscowRussia
  3. 3.Department of GeographyMoscow State UniversityMoscowRussia

Personalised recommendations